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Preface

This text is an embryonic preface. The full preface will be written at the end.
For the time being, I will write remarks that will be included in the final version.

1.
2.

Prerequisites: Arveson’s invitation to C*-algebra [10].

Hilbert spaces will be over C and unless otherwise specified, separable. All
operators are linear and unless specified to the contrary, bounded. If H
is a Hilbert space, then B(H) will denote the algebra of (bounded linear)
operators on H. K(H) will denote the ideal of compact operators.

Other separability hypotheses: All topological spaces will be assumed to be
second countable and Hausdorff, unless otherwise specified. C*-algebras will
be separable, unless they appear as multiplier algebras of something else.
Include a brief word here about the inductive limit topology on C.(X) —
X locally compact. Measures on locally compact spaces will be Radon mea-
sures, i.e., they will give finite measure to compact sets and will be regular.
Abstract measure spaces will usually be standard, almost always analytic,
and always countably generated.

Image of a measure p under a Borel map 7 will be w(u): w(u)(E) =

w(rH(E))

iii
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CHAPTER 1

Transformation Group C*-algebras

1.

In this chapter we present some basic facts about transformation group C*-
algebras. Transformation groups have played a major role in operator algebra from
the very beginning of the subject. Our objective here is simply to highlight special
features of these algebras that have inspired the use of groupoids. Details will be
given in the context of groupoids later. It is our hope that the reader will find
groupoids just as manageable as transformation groups and more useful for the
purposes of operator algebra.

Suppose that X is a locally compact Hausdorff space and that G is a locally
compact group acting on X. We denote the action of t € G on z € X by xt; if G is
abelian, we write z+¢. The pair (X, G) will be referred to as a transformation group.
With respect to the inductive limit topology!, C.(X x G) is a topological *-algebra
when endowed with the multiplication and adjoint defined by the formulae:

£r9(e,t) = [ fas)glas,s ) ds
G
f*(@,t) := f(at,t71).
Here, ds denotes left Haar measure. (See [63, Lemma 3.7].)

For those who are familiar with transformation group C*-algebras, it should
be noted that the modular function, which is usually included in the definition of
the adjoint, has purposely been omitted. While we will have to pay for this later,
in terms of other unconventional expressions, the groupoid perspective that will be
developed suggests that it ought to be omitted. The map f(z,t) - f(z, t)A% (1),
where A is the modular function on GG, implements a *-isomorphism between the
algebra just defined and the usual *-algebra structure defined on C.(X x G).

It is instructive to reflect for a moment on the meaning of these operations. If
G reduces to {e}, we have C.(X) under pointwise multiplication and conjugation,
while if X reduces to a point, we have C.(G) with its usual convolution and (slightly
modified) involution. What makes the multiplication interesting is the presence of
the action of G on X. If there were no action, i.e., if 2t = x for all t € G and
z € X, then C.(X x G) would be C.(X) ® C.(G), where C.(X) is given its usual
pointwise operations and C.(G) is endowed with its usual convolution product and
involution, f*(t) = f(t~!) — an algebra which, from the perspective of operator
algebra, is essentially no more complicated than the two factors, C.(X) and C.(G).

ITet Y be a locally compact Hausdorff space and for each compact subset K of Y, let CC(Y)K
be the set of all functions in C.(Y") that are supported on K, endowed with the supremum norm.
Then the inductive limit topology on C.(Y) is the unique largest locally convex topology with the
property that for each compact subset K of Y, the identity injection, ix : Cc(Y)X — C.(Y), is
continuous. (See [70, 11.14.3].)
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When the action of G on X is not trivial, the algebra C.(X x G) becomes quite
interesting. Furthermore, what makes these algebras attractive is that they exhibit
interesting operator algebraic phenomena even when the groups and spaces are not
particularly complicated.

Two basic and closely related examples of transformation groups will serve
many of our needs in these notes. They are the source of inspiration for much of
the current work in operator algebra.

ExAMPLE 1.1. 1. We view the 1-torus, or the unit circle, T, as R/Z and
write the image of 6 € R in T as [f]. Given o € R, the integers Z may act
on T according to the formula [0] +n = [0 + an].

2. We also view T? as R? /72 and write the elements in T? as [0, 7], (0,n) € R2.
For a € R, we let R act on T? according to the formula [6,m]+t =[0+t,n+
at).

The completion of C.(X x G) that we wish to study is constructed through
representations that we now define.

DEFINITION 1.2. A representation of C.(X x G) is simply a *-homomorphism,
m:C(X x @) - B(H),

from C.(X x G) to B(H), for some Hilbert space H, that is continuous with respect
to the inductive limit topology on C.(X x G) and the weak operator topology on
B(H) and that satisfies the nondegeneracy condition:

{m(f)€| fe€Ce(X xG), £ € H} is dense in H.

We note that the nondegeneracy condition appears in subtle ways in arguments
and cannot be ignored altogether, as one might think at first glance.

DEFINITION 1.3. For f € C.(X x G), ||f|| is defined to be
sup{||7(f)|| | m — a representation of C.(X x G)}.

One asks immediately: Is this quantity finite? Is it a norm? The supremum
is finite and it does define a norm, but to prove this requires some preparation.
Before discussing it, however, we state for reference

PROPOSITION 1.4. The quantity, || - ||, is a C*-norm on C.(X x G) and the
completion of C.(X x G) with respect to it is a C*-algebra. We call this C*-
algebra the transformation group C*-algebra associated with the transformation
group (X,G) and denote it by C*(X,G).

To prove 1.4, we need to know how to construct representations of C.(X x G).
The key ingredient is defined in

DEFINITION 1.5. A covariant representation of (X, G) consists of a pair (p,U),
where p : Co(X) — B(H) is a nondegenerate C*-representation and U : G — U(H)

— the unitary group in B(H) — is a strongly continuous unitary representation
such that
(1.1) Ut)p(p)UE™) = per),

¢ € Co(X), where py(z) = p(xt).
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The equation (1.1) is called the covariance condition. Sometimes a covariant
representation is also called a system of imprimitivity.

Given a covariant representation (p,U), we define p x U : C.(X x G) — B(H)
by the formula p x U(f) := [, p(f(-,t))U(t)dt, f € Cc.(X x G). The integral is
calculated in the weak or strong operator topology. A moment’s reflection reveals
that p x U is a representation of C.(X x G).

THEOREM 1.6. [63] The map (p,U) — px U is a bijection between the covari-
ant representations of (X,G) and the representations of C.(X,G). That is, every
representation © of C.(X X G) may be written as 7 = p X U for a unique covariant
representation (p,U).

The representation p x U associated with a covariant representation (p,U) is
sometimes called the integrated form of (p,U), while the covariant representation
associated with a representation 7 is called the disintegrated form of w. We will
not prove Theorem 1.6 here; it will fall out of later material. Indeed, Renault’s
disintegration theorem, Theorem 3.32, which is the goal of Chapter 3, may be
viewed as a far-reaching generalization of this theorem. However, we do want to
note the key point of the proof: Given a representation 7 of C.(X x G), it is
natural to try to define U(t)n(f)¢ = n(f;)€, where fi(z,s) := f(xt,t1s), and to
define p(p)m(f)€ = w(p - )&, where ¢ - f(z,t) := p(z) f(z,t). The problem is first
to show that U and p are well-defined, and then that # = px U. For these purposes,
an important ingredient is an approximate identity:

€n i= ¥n * On,

where {¢,} is an approximate identity for C.(X), {0,} is an approximate identity
for C.(G), and ¢y, - 6p(2,t) = pr(x)d,(t). As we shall see in the proof of Renault’s
disintegration theorem, Theorem 3.32, and elsewhere in the theory, approximate
identities play an important role in the study of groupoids.

Given Theorem 1.6, Proposition 1.4 is almost immediate. Indeed, given a
representation 7 of C.(X X G), written # = p x U, we have

(1.2) (Dl < / 17 G2 8)lloodt == [l
f € C.(X x @), because

(o x U(P)E,m)| = \ /G (P(F ()T )E 7) dt
< /G Ho(F D)l U E )] dt

S/ Gl @t €l limll = 11£ lolIEl Il
G

Thus ||f]] <€ ||fllo, which is clearly finite for each f € C.(X x G). The rest of the
proof requires no further comment.

To proceed further with the theory, we need to analyze more carefully the
structure of the covariant representations. However, before doing this, let us discuss
some facts that make the theory of transformation group C*-algebras particularly
piquant. Proofs of most of them will be given in the context of groupoid C*-
algebras, in later chapters. First of all, it is easy to see that C*(X, @) is unital
precisely when X is compact and G is discrete. In this case, 1x .} serves as the
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identity?. If G acts freely on X in the sense that the equation zt = z implies t = e,
and if G is discrete and amenable, then elements in C*(X,G) may be viewed as
functions in Cy(X x G). Otherwise, elements in C*(X,G) may be “far removed”
from functions on X x G. This is analogous to what happens in group C*-algebras,
even algebras as simple as C*(R). Of course R is amenable, but not discrete. In
this case C*(R) is naturally isomorphic to Co(R) via the Fourier transform. The
space R is naturally isomorphic to R, indeed, it is always identified with R, but it is
important to think of it as a distinct copy of R. However, strictly speaking, C*(R) is
a space of distributions on R , some of which are not functions, whose distributional
Fourier transforms are continuous functions on R that vanish at infinity.

If U C X is open and invariant, then C*(U,G) may be viewed as an ideal in
C*(X,@G) in an obvious way: Simply extend functions in C.(U x G) to functions
in C.(X x G) by declaring them to be zero outside U x G and take the closure in
C*(X,G). If G acts freely on X and if G is amenable, then the map U — C*(U, G)
from open invariant subsets of X to ideals in C*(X, @) is a bijection. The fact that
the map is an injection is easy to see. The fact that it is surjective is much deeper. It
is a consequence of Gootman and Rosenberg’s solution [79] to the so-called Effros-
Hahn conjecture [63] which deals with the ideal structure of C*(X, G) without the
assumption of free action. This has been generalized to groupoid C*-algebras by
Renault [175] and we will discuss his proof in Chapter 6.

In general, the ideal theory of C*(X,G) depends upon how G acts on X and
how the isotropy or stability groups vary. (The isotropy group at z is defined to
be {t € G | zt = z}.) The analysis of group actions and the “distribution of
isotropy” is an active area research today. Observe that if X = T, with Z acting as
in Example 1.1, the action is free if and only if « is irrational. In this case C*(X,Z)
is simple. On the other hand, if « is rational and expressed in lowest terms as 72,
then C*(T,Z) is naturally isomorphic to C(T/Z) ® M,(C), where T/Z denotes the
quotient space. This statement will be easy to prove after some general preparation,
but the reader is encouraged to try to prove it now to become acclimated to the
thinking that will drive later developments.

We turn next to some examples and the analysis of some specific covariant
representations.

EXAMPLE 1.7. Let p be a (positive) measure on X, let A be left Haar measure
on G, and form the Hilbert space H = L*>(X x G, ux ). We define Ind u to be px U
where p(p)€(x, 5) = p(5)é(x,5), @ € Co(X), and U(t)é(x,5) = &(x, st) A5 (t) (re-
call, A is the modular function of G). As the notation suggests, Ind p is called the
representation of C*(X,Q) induced by p. To be more precise, we should say that
Ind p is the representation induced by the multiplicity free representation of Co(X)
determined by letting Co(X) act via multiplication on L*(X,u). We will have oc-
casion to see representations of C*(X,G) induced by more general representations
of Co(X) later in the context of groupoid C*-algebras.

PROPOSITION 1.8. If the action is free ot x, i.e., if xt = x = t = e, then
Inde, is irreducible.?

PROOF. Since the action is assumed to be free at x, the map ¢t — =t is a
Borel isomorphism between G, viewed as a standard Borel space, and the orbit

2We use the notation 1z to denote the characteristic function of a set E.
3Throughout, we use €, to denote the point mass at x.
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of z with its relative Borel structure. This map implements a unitary equivalence
between Inde, and p, x U’, where U’ is the right regular representation of G
on L?(G) and p, is the representation of Co(X) on L?(G) defined by the formula
pz()E(8) = p(x8)E(s) := o (5)&(s). The freeness of the action at x guarantees that
the functions ¢,, ¢ € Co(X), separate the points of G. Consequently, p,(Co(X))"
is L>(Q), viewed as multiplication operators on L?(G). Since this is a masa in
B(L?*(@G)) (i.e., a maximal abelian selfadjoint algebra of operators on L?(G)) with
no invariant projections for U’, it follows easily that Ind ¢, is irreducible. [l

Given ¢ € L*(X,u), define w(p)&(x,s) = p(x)&(x,s). Then 7(p) commutes
with Ind p. In fact, this implies that Ind o is the direct integral of all the Inde,,
Indp = [ )62 Ind e, du(zx). If the action is free on all of X (or at least on the support
of p) w(L*®°(X,u)) is a masa in the commutant of Ind u(C*(X,G)). Thus, in the
presence of free action, we have a natural decomposition of Ind p into a direct in-
tegral of irreducible representations. It should be emphasized that in general this
decomposition is not unique in any sense. Other choice of masas in the commutant
of Ind p(C* (X, G)) may lead to decompositions of Ind p into irreducible representa-
tions of C*(X, @) that are quite different from Inde,. The decomposition of Ind i
is unique (for every measure p) precisely when C*(X,G) is a type I, or postliminal,
C*-algebra. This, in turn, rests delicately on the orbit structure of X. We will find
this matter surfacing again and again in our discussion; it is a central theme in the
theory of groupoid C*-algebras.

REMARK 1.9. To pursue this theme and for other purposes as well, we begin by
noting that the following computation shows that Ind p is rather like a right reqular
representation. It leads one to speculate about o left reqular representation and
possible relations between the two.

1 )o,9) = ( [ o7V OEDD) (0,9
= [ s@s, gt © ax0
- / s, s~ r)AS (s 1)E(x, £) dAE)
= /g(a:,t)g+(mt,tfls) d\(t)

={xg"(z,9),
where f € C.(X X @), g(z,s) = f(z,5)A2(s), and g+ (z,s) = g(zs,s™1).

DEFINITION 1.10. A measure p on X is called quasi-invariant (q.i.) in case p;
is mutually absolutely continuous with respect to u, where u; is the translate of p

by t; i.e., [ f(z)du = [ f(zt)dp, f € C(X).

Let p be quasi-invariant and set Jy(-, t) equal to the Radon-Nikodym derivative
dpg/dp. Note that Jy is defined only up to a p-null set that, a priori, depends on
t. Moreover, an application of the chain rule shows that for each s and ¢ there is a
p-null set N, depending on s and ¢, such that

(1.3) Jo(z, st) = Jo(x, s)Jo(xs,t)
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for all z ¢ N. The question immediately arises: Is it possible to choose Jy so that
equation (1.3) is satisfied for all z,s and ¢ without exception and so that Jy is a
Borel function on X x G7 This question has a long history with variously qualified
affirmative answers. It is the sort of problem that appears often in representation
theory and in the theory of stochastic processes.

From the perspective of these notes, the most satisfactory answer is due Arlan
Ramsay [157, 161] and will be presented in Chapter 4. We state here for later
reference a special case of Ramsay’s theorem which gives an affirmative answer to
the question in the specific setting in which it is posed. A proof of the special case,
requiring very little technology, may be found in Appendix B of Zimmer’s book
[205]. However, it contains the key idea of Ramsay’s theorem [157, Theorem 5.1]
which may be traced back to Mackey’s Lemma 6.2 in [118].

In order to present it, we require a bit more terminology. Suppose that H is a
Borel group, meaning that H has a Borel structure in which the group operations
are Borel. Suppose, too, that u is a o-finite measure on X which is quasi-invariant
under the action of G.

DEFINITION 1.11. i) A Borel function C : X x G — H is called a (1-)
cocycle provided that for each s,t € G, there is a p-null set N C X, possibly
depending upon s and t, such that

(1.4) C(z,st) = C(x,s)C(xs,1)

forallxz ¢ N.

ii) If C satisfies this equation for all x, s and t, without exception, then C is
called a strict cocycle.

iii) The cocycle C is called a coboundary in case there is a Borel function B :
X — H such that for each t € G, C(x,t) = B(z)B(xt) ! a.e. u. Again
the exceptional null set may depend upon t. The function B, itself, is often
called a coboundary.

iv) Given two cocycles, C1 and C2 on X x G with values in H, we say that
Cy and Cy are cohomologous (or equivalent or similar) in case there is a
coboundary B such that

(1.5) Co(z,t) = B(z)Cy(z,t)B(xt) ™!

a.e. i, for eacht € G.
v) If, in iv), B can be chosen so that the equation is satisfied for all x and t,
then C1 and Cs are called strictly cohomologous.

Observe that equation (1.3) is the assertion that Jy is a cocycle with values
in the multiplicative group of positive real numbers. Our question asks if Jy can
be replaced by a strict version. Observe, too, that p is equivalent to a o-finite
invariant measure precisely when Jy is a coboundary.

THEOREM 1.12. (¢f. [205, Theorem B.9]) Suppose that H is a topological group
whose Borel structure is countably generated and suppose that Cy : X x G — H s
a cocycle. Then there is a strict cocycle C : X x G — H such that for each t € G,
Co(z,t) = C(=,t) a.e. p.

One can prove, too, that cohomologous cocycles may be represented by strict
cocycles in such a way that the cobounding equation is satisfied on all of X x G.

From now on, when discussing a quasi-invariant measure, we will write J for
a strict solution to the cocycle equation (1.3). The notion of quasi-invariance for



measures is an important generalization of invariance. Many of the ideas that make
sense for invariant measures extend to quasi-invariant measures with little or no
difficulty. Moreover, as we shall see, from some perspectives quasi-invariance is
an easier concept to deal with than invariance. A quasi-invariant measure is called
ergodic if the only invariant Borel sets are either null or conull (i.e., the complement
is null). Just as an invariant measure can be “decomposed” into ergodic pieces, so
can a quasi-invariant measure. This has an operator algebraic flavor which we shall
formulate below.

A measure class is a family C' of measures such that any two measures in C'
are mutually absolutely continuous. We say that a measure class C' is invariant in
case u; € C for all t € G whenever p € C. Thus C is invariant if and only if each
i € C is quasi-invariant. An invariant measure class is called ergodic if and only if
each p in C is ergodic.

Recall that a representation p of Co(X) determines a unique measure class on
X. Indeed, through the Riesz representation theorem, each vector £ in the Hilbert
space of p gives rise to a measure p¢ on X defined by the formula

@Wﬁ@=/w@s

It is easy to see that two separating vectors* for p(Co(X))" yield mutually ab-
solutely continuous measures on X. The measure class that these determine is
called the measure class of p. Observe that if (p,U) is a covariant representation
of (X, @), then the measure class of p is invariant. (This is because a unitary opera-
tor that normalizes a von Neumann algebra carries separating vectors to separating
vectors.) We will call 7 = px U ergodic if the measure class of p is ergodic. Observe
that if F is an invariant Borel set, then p(1g) lies in the center of 7(C*(X, G))",
where j is the canonical extension of p to L*°(X, u) and where p is any measure in
the measure class of p. This leads one to focus attention on ergodic representations,
since one may disintegrate a representation m over the center of 7(C*(X, @))".

THEOREM 1.13. If m = px U is a representation of C*(X,G), then the measure

class of p is invariant and there is a direct integral decomposition T = f}? Ty dv(y)
where each my is ergodic.

It should be noted that the decomposition = = f? my dv(y) is not necessarily

the central decomposition of m (i.e., m, need not be factorial for y in a set of
positive measure), but in a sense, it is a good start. Furthermore, the description
of an ergodic representation can be carried out in a bit simpler fashion than that
of an arbitrary representation. This is the implication of the following theorem.

THEOREM 1.14. (See [118] and [157, Section 10].) Let m = px U be an ergodic
representation of C*(X,G) on a Hilbert space H. Let p be a quasi-invariant measure
in the measure class of p and let J be a strict cocycle satisfying J(-,t) = dug/dp.
Then there exist (i) a Hilbert space Hy, (i) a strict cocycle

0: X x G = U(H,),

4Recall that a vector ¢ in a Hilbert space is called a separating vector for an algebra A of
operators if the equation a§ = 0, a € A, implies a = 0. Commutative von Neumann algebras on
separable Hilbert spaces always have separating vectors: Simply let £ be the sum of a sequence of
vectors, properly weighted, whose complex linear span is the whole space.
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with values in the unitary group of Ho, U(Hy), endowed with the strong oper-
ator topology, and (i) a Hilbert space isomorphism W : H —s L?*(X,u, Hp)
such that (Wp(@)W~1€)(z) = ¢(2)é(2), £ € L*(X, 1, €) and (WU )W ~1€)(z) =
O(z, t)E(xt)J 2 (wt, t1).

OUTLINE OF PROOF.  First diagonalize p, writing H = [y H (z) du(z) and [p(¢)€](x)
= @(x)&(x). The measure u is assumed to be quasi-invariant and ergodic, and this
implies that the dimension of H(z) is constant almost everywhere. Therefore, we
may write H = L?(X, u, Hy) for some fixed Hilbert space Hy. Define {V (t)}sq on
H by the formula (V (t)¢)(z) = &(zt)J 2 (zt,t~1). It is easy to check that {V () }iq
is a unitary representation and that (p, V) is a covariant representation. ({V (¢) }+eq
is called the permutation representation of G determined by p and H.) Conse-
quently, U#)V(#)~! = U(#)V(¢~!) commutes with p, and so is a decomposable
operator. Hence, for each t € G, there is a Borel function O(-,t) : X — U(Hp)
such that (U(t)V (t)71¢) = O(z,t)é(x) for almost all 2. Rewriting this equation
yields (U(#)€)(z) = O(, t)&(xt) T2 (xt,t~1). As in our discussion about J, O(-,¢)
is determined only up to a null set that depends upon ¢ and it is not evident, a
priori, that © is a Borel function of the two variables, x and ¢. However, the strong
continuity of {U(t) }teq and {V () }+eq¢ implies that © may be chosen to be Borel.
Furthermore, the group property of {U;}sc implies that © is a cocycle. Theorem
1.12 may then be applied to replace © by a strict version, once it is noted that
U(H,) satisfies the hypothesis placed on the group H in it. O

THEOREM 1.15. (See [118].) Fori = 1,2, let m; be an ergodic representation of
C*(X,G) and let (u;, Hoi, ©;) be the data associated to w; in Theorem 1.14. Then m
is unitarily equivalent to wo if and only if py is equivalent to po, dim Hy; = dim Hyy
and, after identifying py with pa and Hoy with Hos, ©1 and ©2 are cohomologous.

OUTLINE OF PROOF. If the conditions are satisfied and if B is a coboundary con-
necting ©;and ©2, then B induces a decomposable unitary operator on L?(u, Ho) (p
= p1 = pa, Hy = Hp1 = Hypy) implementing a unitary equivalence between 7, and
mo. Conversely, if m; and 7 are unitarily equivalent, say by W, then so are p;
and po, where m; = p; x U;. Standard multiplicity theory enables one to conclude
that gy ~ pe and that dim Hy; = dim Hys, and after identifications are made, that
W is decomposable. If W is given by multiplication by a unitary-valued function
B, then the equation WU; ()W ~1 = Us,(t) readily implies that B is a coboundary
connecting ©; and ©s. O

EXERCISE 1.16. If v is a positive measure on X and if m = Indv, when is «
ergodic and what are u, Hy and ©7

This exercise is nontrivial without additional preparation, but reflection now
on how to deal with it should prove illuminating. (See Example 3.28.) In this
connection, it is worthwhile to address a special case.

Suppose v is quasi-invariant. In this event, in Theorem 1.14, we take yu = v,
we let Hy = L?(G), we identify L2(X x G,v x \) with L2(X, v, L?(Q@)), and we let
(O, 1)€)(z,8) = £(w,t71s). Define W : L2(X x G,v x X) = L*(X x G,v x \) by

(1.6) (WE)(z,8) = J2 (w5, s 1)A2 (s71)E(zs, s70).
Then a computation shows that
WU@OW ™ ¢(z,s) = E(at, t7'8) T2 (at,t7") = (O(, )V (1)€)(x, 5),



where
V(t)E(z, 5) = E(at, )T % (at,t71),
and

W)W é(z,5) = p()é(z, 5).

Thus W transforms the covariant pair (p,U) for Ind v into the canonical form of
Theorem 1.14. Moreover, as a by-product, we see that for f in C.(X x G),

W (Ind v(f))W~'¢(x, s) = / Flz, )T (zt, tV)E(wt, 7 s) ds

= f * §($, 5)7
Fla,t) = fz,8)T% (at,t ).

Thus, while f need not be in C.(X x @), it is easily deduced from this compu-
tation that the commutant of Ind »(C*(X, G)) is transformed by W into the weak
closure of Ind v(C* (X, G)). This, really, is the meaning of quasi-invariance for our
purposes, and these calculations help to clarify the speculation suggested in Remark
1.9.

We have commented on how the structure of the open invariant subsets of X is
reflected in the ideal structure of C*(X, G). In a sense, the decomposition of X into
invariant Borel sets gives a finer decomposition of C*(X,G). After all, when the
action is free, two ergodic representations of C*(X, @) are either disjoint or weakly
equivalent (we define and discuss these notions thoroughly in Chapter 6). The first
case occurs when the associated quasi- invariant measures are supported on disjoint,
invariant Borel sets, and the second occurs when the measures are equivalent. It
is natural to reflect, then, on what happens when there is precisely one orbit in
X, i.e., when (X, Q) is transitive. This, historically, was the first situation to be
considered and the analysis to follow is due to Mackey [114, 115, 118].

Suppose (X, @) is transitive, so that for each z and y in X, thereis at € G
such that zt = y. Pick 2o and let H = {t € G | zot = ¢} be the isotropy group at
Zo. Then H is a closed subgroup of G and the map ¢ : Ht — xot from the right
coset space H\G to X is a well-defined homeomorphism that is equivariant for the
natural action of G on H\G and the action of G on X. (That is, o(Hts) = ¢(Ht)s,
for all s and t.) Henceforth, we will identify (H\G,G) with (X, G).

Our global separability assumptions enable us appeal to [115, Lemma 1.1] to
find a Borel map v : H\G — G so that n(y(Ht)) = Ht and v(H) = e. Here,
7 is the quotient map, w(t) = Ht. In general, it is not possible to choose v to
be continuous. For if so, G would be homeomorphic to H x H\G. (Contemplate
G=Rand H=7).

THEOREM 1.17. [115] There is a unique invariant measure class on H\G, and
it is ergodic.
Indeed, simply take a probability measure on G that is equivalent to Haar

measure and take the class of 7(p).

PROPOSITION 1.18. [115, 118] There is a bijection between unitary equivalence
classes of representations of H and strict cohomology classes of strict cocycles on

H\G x@G.



Give a proof in
Chapter 5, after
Remarks 5.41.

Need a reference to
Chapter 6 here.
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PrOOF. The correspondence is quite explicit. Given a strict cocycle © : H\G x
G — U(K)y), define L : H — U(Kp) by the formula L(t) = ©(H,t). That L
is a unitary representation of H is a calculation. That it is strongly continuous
results from the fact that © is Borel. For the converse, first note that for s,t € G,
~v(Ht)sy(Hts)™! lies in H. Indeed, since v(Ht) € Ht, we may write v(Ht) = ht.
We may also arrange to have h, = e. Then y(Ht)sy(Hts) ! = (hit)s(hists) L =
htht_sl. Given a unitary representation L of H on the Hilbert space Ky, simply
define

Or(Ht,s) = L[y(Ht)sy(Ht) '] = L(h:h;').
Then it is easy to check that O is a strict cocycle:
G)L(Ht,slsg) = L(ht hil ),

ts182

while
@L(Ht, 81)®L(Ht81, 82) = L(ht h_l)L(htsl ht )

ts1 ts182
Moreover, given ©;, i = 1,2, with
W(©1(H,t)W™ = 05(H, t), teH,

for some unitary operator W (i.e., assume the associated representations of H are
unitarily equivalent), then B(Ht), defined to be WO1(H, h;), is a coboundary im-
plementing a similarity between ©; and ©5. Conversely, if ©; and ©, are strictly
cohomologous cocycles, made so by the coboundary B, then the unitary represen-
tations of H, ©1(H,-) and ©2(H,-), are unitarily equivalent via B(H). O

DEFINITION 1.19. Let X = H\G, let p be a quasi-invariant measure on X
and let L : H — U(Ky) be a unitary representation of H. Define UL : G —
B(L3(X, pu, Ky)) by the equation

(U (t)€)(Hs) = O (Hs, t)¢(Hst)J* (Hs, t).
Then UL is called the unitary representation of G induced by L.

THEOREM 1.20. (Mackey’s Imprimitivity Theorem [114]. See [118], also.)
The map which sends a unitary representation L of H to the representation p x U
of the transformation group C*-algebra C*(H\G,G), where p is the representa-
tion of Co(G/H) by multiplication operators on L*(G/H,pu, Ky), preserves uni-
tary equivalence and determines a bijection between unitary equivalence classes of
unitary representations of H and unitary equivalence classes of representations of
C*(H\G, Q). This correspondence further preserves reducibility and establishes an
isomorphism between the commutant of L and the commutant of p x UL,

The proof is easily assembled from what has been presented and so will be left
to the reader.

If (X, Q) is not transitive then a dichotomy arises, either every ergodic quasi-
invariant measure is concentrated on an orbit (depending on the measure), in which
case the analysis of the representations of C*(X, G) reduces to the analysis of the
unitary representations of the isotropy groups along the lines just discussed, or
there is an ergodic quasi-invariant measure on X which assigns measure zero to
each orbit. In this second case, the measure is called properly ergodic. As we will
see later, in the presence of free action, properly ergodic measures exist if and only
if C*(X, Q) is not type 1. Also, as we shall see, having properly ergodic measures
is a property that can be detected directly in terms of the action of G on X.
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To pursue an analysis of properly ergodic actions, Mackey struck upon a truly
wonderful idea: One may profitably think of a transformation group X x G together
with a properly ergodic measure, assuming one exists, as a “virtual subgroup” of
G (see [121, 120, 123]). One then views cocycles as “homomorphisms” of this
virtual subgroup. As a result, J becomes a modular function, ® becomes a unitary
representation, and his Imprimitivity Theorem generalizes as Theorem 1.14 to say
that every representation of G that arises as part of a (properly ergodic) covariant
representation of C*(X,G) is induced from a representation of a virtual subgroup
of G. Moreover, the uniqueness result, Theorem 1.15, effectively translates the
correspondence between commutants discussed in Theorem 1.20.

The harmonic analysis and representation theory of virtual groups can be de-
veloped in a fashion quite parallel to that of ordinary harmonic analysis. (In this
connection, special attention should be drawn to the works of Arlan Ramsay cited
in the references.) Moreover, this theory leads directly to the study of groupoids,
which we take up in the next chapter. Consequences from the virtual group per-
spective will arise in these notes quite frequently (we already have indicated some),
but we make no effort to pursue it in a systematic fashion. Most of what we have to
say about them will be found in Chapter 4. Our emphasis will be on how groupoids
generalize the notion of “matrix indices.”

We note, too, that Marc Rieffel [177] realized that Mackey’s Imprimitivity
Theorem, Theorem 1.20, is really an instance of, and can be explained by, Morita
theory. This will play an influential role in much of the material to follow.
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CHAPTER 2

Groupoids and Groupoid C*-algebras

The first section of this chapter is devoted to presenting the algebraic fun-
damentals of groupoids. It will develop that in many respects, groupoids are no
more complicated than groups. The key idea to be presented here and emphasized
throughout the remainder of the monograph is that in the same fashion as one
thinks of groups as acting on sets, one should view groupoids as acting on fibred
sets. In our opinion, the richness of the subject stems from the imposition of topolo-
gies and Borel structures on groupoids. These are introduced in the second section.
The third section is devoted to introductory facts about groupoid C*-algebras.

1. The Algebra of Groupoids

We begin with the definition of groupoid. While in one sense the connection
with groups is clear, by itself the definition may seem unmotivated and its salient
features may be a bit difficult to grasp. It is best to keep in mind a number of
examples. Some will be presented immediately following the definition and the
introduction of some useful terminology.

DEFINITION 2.1. Let G be a set and let G'? be a subset of G x G. Suppose
there is a map (x,y) = xy from GP to G and an involution x — x~* on G such
that the following conditions hold:

() If (z,y) and (y,2) are in G@, then so are (zy,z) and (x,yz), and the
equation, (zy)z = x(yz), is satisfied;

(i) For allz € G, (z7',z) € G and if (z,y) € G?, then x~'(zy) = y while
(zy)y™ ==

Then G, with this structure, is called a groupoid. The set G is called the set
of composable pairs and z~! is called the inverse of .

The maps r and s on G, defined by the formulae r(z) = zz~! and s(z) = z7 'z,
are called the range and source maps. It follows easily from the definition that they
have a common image called the unit space of G, which is denoted G®). Condition
(i) implies that r(z)z = zs(z) = x. Consequently, r(z) is called the left unit
of z and s(x) is called the right unit. It is useful to note that a pair (x,y) lies
in G® precisely when r(y) = s(z) and that the elements of the unit space G©
are characterized by the equation 2 = z=! = z2. Because of this equation, we
like to think of units as (infinitesimal) orthogonal projections and we like to think
of elements of G as (infinitesimal) partial isometries; the initial space of x € G,
viewed this way, is s(x), while the final space is r(z). We will describe many
examples throughout this monograph. The following initial collection identifies
examples that will occur frequently throughout this monograph.

13
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EXAMPLES 2.2. (i) Of course, every group is a groupoid. In a group, any
two elements are composable and the unit space reduces to a singleton con-
sisting of the identity element.

(ii) Suppose H is a group that acts on a set X, as in the first chapter. Let G =
X x H, set G® = {((z,1),(y,5)) | y = zt}, define (z,t)(xt,s) = (z,ts) and
set (z,t)~! = (xt,t=1). Then it is routine to check that with these operations
G becomes a groupoid. Observe that r(z,t) = (x,e), while s(z,t) = (xt,e),
so we may view X as the unit space of G. We shall frequently make this
identification. This groupoid is called the transformation group groupoid
determined by the action of H on X.

EXAMPLE 2.3.  (iii) Let X be any set and let R C X x X be an equivalence

relation. Set R®) = {((x1, 1), (%2,92)) | y1 = w2}, define (w1,51)(y1,92) =
(z1,y2) and define (x,y)~! = (y,z). Then it is easy to check that R becomes
a groupoid and it is evident that R(®) is the diagonal A = {(z,z) | z € X }.
We frequently identify X with A = R©) in this context. Two extreme cases
deserve to be singled out. If R = X x X, then R is called the trivial groupoid
on X, while if R = A, then R is called the co-trivial groupoid on X.

(iv) Let X be a set and let p : X — U be a surjective map from X to an-
other set U. We say that X is fibred by p over U, and we call p~(u)
the fibre over u, writing X, or X(u) for p~*(u). Let Iso(X,p,U) be the
set {(v,p,u) | ¢ : Xoy = Xy is a bijection}. We say that two elements
(v1, ¢1,u1) and (va, P2, us) are composable in case uy = va. In this event,
we deﬁne (U1,¢1,U1)(U17¢2,UQ) = (1)1,¢1 o ¢2,U2). AlSO, (U,¢, u)il is de-
fined to be (u,¢~1,v). Then with respect to these operations Iso(X,p,U) is
easily seen to be a groupoid, which is called the isomorphism groupoid of the
fibred set X. As we shall see in a moment, there is a “Cayley Theorem” for
groupoids, asserting that every groupoid is isomorphic to a subgroupoid of
Iso(X,p,U) for a suitable fibred set X.

(v) Let G = {Gy}uecv be a family of groups indexed by a set U. We let U xG =
{(u,t) |u €U, t € Gyu}. (The process of forming U x G is the standard way
of forming the “disjoint union” of the family G.) If we define (U * g)(2> to
be {((u,t),(v,8)) | u =0}, and if we set (u,t)(u,s) = (u,ts), and (u,t)™! =
(u,t71), then (U x G) becomes a groupoid, called a bundle of groups over U.
Of course U x G is fibred over U in the obvious way, p(u,t) = u, and p~*(u)
is naturally identified with G.,.

(vi) Let Q andV be sets, and suppose that there are given two surjective maps r
and s from Q to V. The set Q, or the system (Q,V,r,s), is called a quiver.
The elements of Q are called arrows and the elements of V are called ver-
tices. For g € Q, r(q) is called the range of ¢ and s(q) is called the source of
q.! Associated with a quiver is a path space X and a path groupoid G defined
as follows. The space X consists of all infinite sequences © = (q1,q2,---)
with the property that s(q;) = r(qir1) for all i. The groupoid G consists
of all triples (z,l,y) € X XZ x X, x = (q1,92,-..) and y = (q,d5,...),
with the property that there is an integer N, depending on (x,l,y), such
that for all k > N, qx = q;,_;. Two triples, (x1,l1,y1) and (z2,l2,y2),

L An alternate term for a quiver is a directed graph; the vertex set is V and the edge set is
Q. However, we have adopted the terminology of quivers out of deference to Gabriel, who first
introduced path space techniques into algebra in [74]. See [75] also.
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are declared composable precisely when y; = x2 and their product, then, is
(z1,l1 + l2,y2). The inverse of (x,1,y) is (y,—l,z). As we shall see later,
the class of groupoids G associated with finite quivers coincides with those
groupoids giving rise to Cuntz-Krieger C*-algebras. In the special case when
V consists of only one point and Q has cardinality n then the groupoid G,
giwes the Cuntz C*-algebra O,,.

Another way to think of a groupoid is to say that a groupoid is a small category
in which every morphism is invertible. This perspective is very useful and helps to
inform one of the kind of algebraic operations that can be performed with groupoids.
It is the point of view adopted in Higgins’s book [92]. We will not try to make a
comprehensive presentation of the basic algebraic facts about groupoids here, but
some of aspects will be necessary.

DEFINITION 2.4. (i) Fori=1,2, let G; be a groupoid. A map ¢ : G1 — G4
is o homomorphism if and only if whenever (z,y) € Gg2), (¢(x), d(y)) is in
GgQ), and in this case, ¢(zy) = ¢(x)P(y).

(ii) Fori=1,2, let ¢; : G1 — G2 be homomorphisms. We say that ¢, is similar
or cohomologous to ¢ if and only if there is a function b : G§°) — G2 such
that b(r(z))¢1 (z)b(s(z)) L = ¢o(z) for all z € G;.

(iii) If ¢(z) = b(r(z))b(s(x))~t, for a function b : G§°’ — Ga, then ¢ (or b) is
called a coboundary.

It is easy to see that homomorphisms map units to units and inverses to in-
verses. Also, “similarity” generalizes the notion of conjugacy or similarity for group
homomorphisms. That is, if G; and G5 are groups, then two homomorphisms
¢,v : Gi = G4 are similar in the sense of Definition 2.4 if and only if there is a
b € Gs such that ¢(z) = bp(z)b ! for all z € G1. If G = X x H, as in Example
2.2(ii), and if G5 is a group, then a homomorphism is simply a map ¢ : X x H = G2
such that ¢(z,ts) = ¢((z,t)(xt,s)) = ¢(x,t)d(zt,s). That is, homomorphisms in
this context are (strict) 1-cocycles in the sense of Chapter I. (See equation (1.4) in
particular.) Two such homomorphisms ¢; and ¢, are cohomologous or similar if
and only if ¢o(z,t) = b(z)d1 (x,t)b(xt)~! (cf. equation (1.5)).

If one takes the perspective that a groupoid is a small category in which ev-
ery morphism is invertible, then homomorphisms are functors and cohomologous
homomorphisms are naturally equivalent functors, with a coboundary defining a
natural transformation between them.

The following proposition will be cited at several points in these notes.

PROPOSITION 2.5. If Gy = X x X is the trivial groupoid on the set X, then
any homomorphism, ¢ : G1 — Ga, from G1 to any groupoid G2 is a coboundary.
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PROOF. Fix yo € X arbitrarily and define b : X (= G\”) = G, by the equation
b(z) = ¢(z,yo). Then for (z,y) € Gi,

#(z,y) = ¢((z,y0) (Y0, v))
= (2, 90)(Y0,Y)
= ¢(,90)0((y,%0) ")
= ¢(x,90) by, 10)) "

b(z)b(y) ™"
b(r(z,y))b(s(z,y)) "

O

Let G be a groupoid and define ¢ : G = G x GO by the formula ¢(x) =
(r(z),s(x)). A moment’s reflection reveals that the range of ¢ is an equivalence
relation in G( x G(9 and that ¢ is a homomorphism when the equivalence relation
is viewed as a groupoid. Observe that if G = X x H is a transformation group and
if X is identified with G(®), then ¢ : G — X x X is given by the formula ¢(z,t) =
(z,zt). Thus the relation ¢(G), in this case, is the so-called orbit equivalence
relation determined by G. This observation and the terminology from the theory
of transformation groups motivate the definitions to follow. The reader should take
note that the terminology is not universal. However, in the application of groupoids
to operator algebra, the terminology is commonly accepted.

DEFINITION 2.6. Let G be a groupoid and let ¢(x) = (r(x), s(x)),x € G.

(i) The range of ¢ in G x G(© is called the orbit equivalence relation deter-
mined by G.

(ii) For u € G, its equivalence class under ¢(G) is called the orbitof .

(ii) A subset A C GO is called invariant if and only if it is saturated with
respect to ¢(G), i.e., if and only if it is a union of orbits.

(iv) G is called o principal groupoid if and only if ¢ is 1-1. In this case, we often
identify G with ¢(G) and also call G an equivalence relation. (Note that a
transformation group groupoid X x H is principal if and only if H is freely
acting.)

(v) A groupoid is transitive if and only if ¢ is onto, i.e., if and only if there is
only one orbit.

The proof of the following proposition is evident and so will be omitted.

PROPOSITION 2.7. Let {Gy}aca be a family of groupoids.
(i) Assume {Ga}aca is disjoint and let G = |J,c 4 Go- Then G becomes a
groupoid if G is defined to be Uaea Gg?) and if the operations are defined

in the obvious way.
(ii) Let G = [Ipes Gao- Then G becomes a groupoid if G is defined to be

{((za), (W) | (arya) € GS"’}; the operations on G are defined component-
wise.

In view of this proposition, it is worth noting that when viewed as a groupoid
every equivalence relation is a disjoint union of trivial groupoids; i.e., the groupoid
is the disjoint union of the trivial groupoids built on the equivalence classes.
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In conjunction with the preceding proposition, the following self-evident propo-
sition is one indication of why groupoids are a more flexible tool in operator algebra
than transformation groups.

PROPOSITION 2.8. Let G be a groupoid and let E be a (non-empty) subset of
GO, Then if G|g is defined to be r—'(E) N s~ (E), G|r becomes a groupoid with
unit space E when (G|g)® is defined to be G N (G|g x G|g) and the operations
are the restrictions of the operations on G.

One should think of the process of passing from G to G|g as the process of
taking a corner of a matrix. The groupoid G|g is called the reduction or contraction
of G by E. Note that G is the (disjoint) union of the groupoids G|g and G|ge
precisely when FE is invariant. It is particularly important to note that if F is
a singleton {u}, u € G©, then G|fu} is a group with identity w. This group is
called the isotropy group or stability group of u. When G is a transformation group
groupoid, this new terminology agrees with that in Chapter I.

It is perhaps worthwhile to insert here that while it is tempting to think of G|g
as a subgroupoid of G, we reserve the term, instead, for a subset H C G, containing
G, such that when H(? is defined to be (H x H) N G®), H is closed under the
operations of G. The issues of subobjects and quotient objects in the category of
groupoids is rather more complicated than those in the category of groups. We will
have little to say about them here and refer the reader to [29], [92], and [113] for
further discussion. There is, however, one point concerning these notions that will
be of particular use to us.

DEFINITION 2.9. Let G be a groupoid and let S = {z | r(z) = s(z)}. Then &
is called the isotropy group bundle of G.

Evidently, & is the disjoint union J,cq0) Gliu}, and so is a bundle of groups
in the sense of Example 2.2(v). Also, § is a subgroupoid of G in the sense just
defined. Recalling that the map ¢ : G = G© x G© defined by the formula
#(z) = (r(z), s(x)) is a homomorphism and noting that its kernel (i.e., ¢~ ((G® x
G©)©) = $~1(A), where A is the diagonal in G(©) x G(9)), is the isotropy groupoid
&, we are inclined to write

(1.1) GO —3—G— ¢(G) — GOV

to summarize all of this succinctly, in analogy with the custom in group theory.
Here, of course, the first two arrows indicate the obvious imbeddings and the third
indicates ¢. However, no sense, really, can be given to the last arrow except to
say that it indicates that ¢ is surjective. One adjustment one might make is to
replace the right-hand copy of G(°) in the sequence with the quotient space G(*) /G
consisting of all the orbits [u] of points u € G®). The last arrow then becomes
the homomorphism from ¢(G) onto the co-trivial groupoid G® /G which sends
(u,v) € ¢(GQ) to [u](= [v]). While this is fine from the algebraic perspective, it
meets with difficulties when topological or measure theoretic structures are involved.
Consequently, we adopt the convention that when writing short exact sequences like
(1.1), the last arrow simply indicates that the preceding map is surjective.

It should be noted that the sequence (1.1) leads to a natural gradation in
the study of groupoid C*-algebras. One first concentrates on the principal case;
i.e., on the case when all the isotropy groups reduce to singletons and then one
worries about how the isotropy groups might be distributed. Caution should be
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exercised here, however. In many interesting groupoids, one cannot separate the
isotropy from the “principal part” in any simple fashion and one just has to take
the groupoid as a whole. We will return to this point in due course.

We adopt the following notation in the next proposition and throughout this
monograph. If E C G, then r~'(E) is denoted G¥ and s~'(E) is denoted
Gg. We write G and G, for G1*} and G{u}- This is the standard notation in
the literature. However, the following alternate notation, suggested to us by Arlan
Ramsay, has its merits: For G¥ write E-G, where for any pair of subsets A, B C G,
A-B:={af| (o, 8) € GP N(Ax B)}. Likewise, G may be written as G - E and,
in particular, G* = u@G and G,, = Gu.

ProprosITION 2.10. (i) Each groupoid may be written (uniquely) as the dis-
joint union of transitive groupoids.
(ii) Each transitive groupoid is isomorphic to the Cartesian product of a trivial
groupoid and a group.

PRrOOF. The first assertion is clear: G = U, cq0 /g Gl and Gl[u] is tran-

sitive. (Remember, G(O)/G denotes the quotient space of G(® determined by the
orbit equivalence relation.) For (ii), we show that if G is transitive, then G is iso-
morphic to G|,y X (GO x G) where G x G(© is the trivial groupoid on G(©)
and u is any unit in G(©. (Recall, G|{u} denotes the isotropy group at u.) Fix
u € G and note that since G is transitive, the restriction of s to G¥, s|G*, maps
G* onto GO, Let 4 be any cross section to s|G"; i.e., v maps G to G* and
satisfies s(v(v)) = v, v € G(*). Finally, define 1 : G — G|} X (G x G() by the
formula

P(@) = (v(r(@))zy(s(2) 7, r(@), s(2))
= (v(r(@)ay(s(z) ", ¢(2)).

It is easy to check that 1 is well defined and an isomorphism. O

REMARK 2.11. The decomposition provided by Proposition 2.10 involves mak-
ing arbitrary choices at two points: First, there is the choice of a representative
from each equivalence class in G(© /G; and, second, there is the choice of cross
section yv. When there are topologies or measure theoretic structures on a groupoid,
it may not be possible to make such choices in a continuous or measurable fashion.
These “handicaps” provide a richness in the theory which otherwise would be of
limited interest from the perspective of operator algebra.

PRrROPOSITION 2.12. (Cayley’s Theorem for Groupoids) Every groupoid is iso-
morphic to a subgroupoid of Iso(X,p,U) for a suitable fibred set p: X — U.

PROOF. Let X =G, p=r, and U = G©. Then X, = G*, u € G(©. Define
®: G — Iso(G,r,G®) by &(z) = (r(z),ls,s(x)), where £, maps G**) to G"(*)
according to the formula £,y = zy. O

One of the fundamental concepts in ring theory, which plays a crucial role
also in operator algebra, is Morita equivalence. (We will take this up in detail
in Chapter 5.) The notion actually appears at the level of groupoids, as we will
discuss momentarily. It is related to, and in a purely algebraic sense is equivalent to,
the concept of similar groupoids. Similar groupoids occur in the measure theoretic
setting and will be discussed at greater length in Chapter 4. To expose the algebraic



1. THE ALGEBRA OF GROUPOIDS 19

fundamentals of both of these concepts, we begin with the ideas of “fibred product”
and “groupoid action.”

Recall that if X, Y and Z are sets and if px : X - Z and py : Y — Z are
surjective maps, then the fibred product they determine, denoted X * Y, is defined
to be {(z,y) | px(z) = py(y)}. Of course the notation X *Y is a little inadequate.
Omitted are any references to Z and to the maps px and py. Usually, these are
evident from context; the star, *, simply alerts the reader that a fibred structure
is present. Working with fibred products can sometimes be tricky. It is useful,
therefore, to note that “the larger Z is, the smaller X %Y is.” At one extreme,
when Z reduces to a point, X *Y is X XY, whileif X =Y = Z and px = py is the
identity, then X x X is the diagonal A. Also, it is helpful to keep in mind that given
a groupoid G, G? is the fibred product G * G = {(z,y) € G x G | s(z) = r(y))}.

DEFINITION 2.13. Let G be a groupoid and let X be a set. We say that G
acts on X (to the left), and that X is a left G-space, in case there is a surjection
r: X = G and a map (v,2) = vz from G * X := {(7,2) | s(y) = r(2)} to X
such that

(i) r(yz) =r(y), (v,2) € G+ X;

(ii) if (11,2) € G* X and (y2,71) € GP, then (yay1,z), (2,717) € G* X and
Y2(n1®) = (2m1)z; and
(iii) r(z)z =z, z € X.

Right actions and right G-spaces are defined similarly, but we use s to denote
the map from X to G(® and we write X * G = {(z,7) | s(z) = r(v)}.

Of course, to say that G acts on X (on the left) is to say that there is a
homomorphism of G into the isomorphism groupoid, Iso(X,r,G(?), of the set X
fibred by r over G(®.

The notation for the maps r and s is to remind one of the range and source
maps in a groupoid. The fact that the same notation is used in both situations
should not cause confusion. It will be possible to distinguish among the multiple
uses of r and s from context.

REMARKS 2.14. 1. Suppose that the groupoid G acts on the left of X (resp.
on the right of X). Then GxX (resp. X *G) has the structure of a groupoid
called the left action groupoid (resp. right action groupoid) determined by
the action. The space of composable pairs, (GxX)® | (resp. (XxG)?) ) is de-
fined to be {((71,71), (12,%2)) | 21 = @2} (resp- {((z1,71), (22,72))|z2 =
z171}), with (y1,7222)(y2, 22) = (M2, 22) and (v,2)~" = (v, vz) (resp.
(@1, m)(@171,72) = (#1,M72) and (z,7)"" = (z7,7")). The unit space of
G x X (resp. X x Q) is identified with X through the map ¢ + (r(x),x)
(resp. © > (z,s(z))). We write G\X (resp. X/G)? for the quotient space
of X under the relation © ~ y if and only if there is a v such that yx =y
(resp. xzy =y). Thus action groupoids are obvious generalizations of trans-
formation groups.

2. A particular type of action groupoid deserves to be singled out, namely the
situation where G acts to the right on itself. This groupoid plays an impor-
tant role in the theory, as we shall see. In this case, G %G is G?). We have

(G(2))(2) = {((z1,31), (@2, 92)) |22 = 191}, (T1,91)(T1Y1,92) = (T1,9192),

and (z,y) ' = (zy,y ). Let r® and 52 denote the range and source

2Tt may be helpful to note that X/G is read ‘X over G’ while G\ X is read as ‘G under X’.
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maps on G, Then r® (z,y) = (z,s(x)) and s (z,y) = (zy, s(zy)). It
is evident from this that (G®)©) may be identified with G. If r® (z,y) =
s (z,y), then xy = =z, forcing y = s(x). Consequently, in this case, (z,y)
is the unit (x,s(x)), showing that G?) is principal. Further, units (z,s(x))
and (y,5(y)) lie in the same G -orbit if and only if r(z) = r(y). Thus, we
may view G as the equivalence relation on G, where z,y € G are equiv-
alent iff r(z) = r(y). The equivalence classes are the spaces G*, as u runs
over GO and GO is a transversal for the equivalence relation.

If X is a left G-space, we let X°P denote the space X, but with the right action
of G defined as follows: s°® = r and zv = vy 'x. Notice that the use of vy~ ! is
necessary; yx does not make sense.

Let X be a left G-space and give X°Px X = {(z,y) | s°?(z) =r(y)} (= {(z,y) |
r(z) = r(y)}) the diagonal action: y(z,y) = (zv~',7y) (= (vz,7y)) (provided
s(y) = s°P(z) = r(y)). We denote the quotient space, G\(X * X), by G or by
X°P xg X, and we denote its elements by [z,y], (z,y) € X°P x X. Thus, and
this is the key property, [z7v,y] = [z,7y]. Then G becomes a groupoid when G®?
is defined to be {([z1,y1], [%2,y2])| there exists v € G such that x2y = y1}. The
multiplication is then defined by the formula [z1,y1][z2, 2] = [z1,v1][v1y 1, y2] =
[z1,91])[y1,7 Yy2] = [z1,7 1ya] = [£17 !, y2] and inversion is defined by the formula
[,y]7! := [y, z]. (One must check that the multiplication is well defined, but that
is not difficult.) Note that the unit space of G may be identified naturally with
G\ X, whose elements are denoted [z], z € X, where the range and source maps r
and s are defined by the formulae: r([z,y]) = [z], and s([z,y]) = [y].

It is helpful to think of X°Px X as an equivalence relation and G = X°Pxg X =
G\ (X°P % X) as a kind of quotient. It is also instructive to think of the pair (G, X)
as an analogue of (R, M) where R is a ring and M is a left R-module. In this case,
G becomes the analogue of M* ® g M, where M* = Hompg(M, R). This analogy
is further reinforced when one recognizes that M* ® g M has a ring structure and
that M becomes a right M* @ g M module in a fashion that is perfectly paralleled
in the groupoid setting: Define s : X —» G\X = G to be the quotient map;
set X G := {(z,[z,y]) | s(z) = [z]} = {(z,[=,y])| there exists v € G such that
z = vz (= zy71)}; and set z - [27,9] = z - [2,7y] := vyy. Then it is easy to
check that this action is well defined and X becomes a right G-space satisfying
v-(z-[z,y]) = (v 2) - [z,y]; i.e., the actions of G and G commute.

There is, of course, a complete left-right duality here. Given a right G-space X,
we can turn X into a left G-space, also denoted X°P, via the formula: vz := zy~!.
The map r°P is s. One may form the groupoid G = X *g X°P which is the quotient
of X  X°P by the diagonal action of G and observe that X g X°P acts to the left
on X. Again, this action commutes with the original G action.

DEFINITION 2.15. The groupoid G = X°P xg X (resp. X xg X°P) associated
to a left (resp. right) G-space X is called the imprimitivity groupoid of the pair
(X, Q) or simply of X if the role of G is clear.

The generalization of the notion of a free group-action to the groupoid setting
is clear: A groupoid G acts freely on X (on the left) precisely when the equation
~-x = x implies that v is the unit s(y) = r(z). Similarly, one defines the notion of
free right action. Observe that if G acts freely on X, then so does G, and the pair,
(G, G), are equivalent in the following sense.
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DEFINITION 2.16. Let G and H be groupoids. We say that G and H are equiv-
alent in case there is a set X endowed with a free left action of G and a free right
action of H such that the actions commute and such that the map r induces a bijec-
tion between X/H and G while the map s induces a bijection between G\X and
HO ie., r(z1) =r(xs) iff there is ann € H such that x1m = x5 and s(z;) = s(z2)
iff there is v € G such that v - x1 = x3.

We then refer to X an equivalence between G and H or simply a (G, H)-
equivalence.

Strictly speaking we should probably append a parenthetic adjective “alge-
braic” and adverb “algebraically” to the terms “equivalence” and “equivalent” (and
later to “similarity” and “similar”). In the topological (and measure theoretic) set-
tings in which these terms will most frequently be used, additional hypotheses
are added. Topological equivalence will be developed in Chapter 5 while measure
theoretic similarity will be discussed in Chapter 4.

EXAMPLE 2.17. An elementary, but nevertheless useful example to keep in mind,
is the one where G is the trivial groupoid on {1,2,... ,n}, G = {1,2,... ,n}?, H is
{1,2,...,m}? and X is, then, {1,2,... ,n} x {1,2,...,m}. The map r is defined
to be the left projection, r(k,l) = k while s is the right projection, s(k,l) = 1. If
(i,7) € G, and (j,k) € X, then (i,7) - (4,k) is defined to be (i, k) and a similar
definition is given when (i,7) € X and (j,k) € H. One verifies easily that X is a
(G, H)-equivalence.

This example “contains” the well-known fact that M,(C) and M,,(C) are
Morita equivalent rings.

EXAMPLE 2.18. Another example to keep in mind relates Morita equivalence
to the notion of similarity that we shall discuss in o minute. Let G be a groupoid
and let T be a subset of G\©) whose saturation [T] = s(r—'(T)) = r(s 1(T)) is
all of G©. Such a set T is sometimes called o transversal, although we shall
reserve this term for sets T satisfying additional properties. Let X = GT. Since
s carries X onto G, G acts to the right on X in the obvious fashion: through
right multiplication. Likewise, since r maps X to T, the unit space of G|r, it is
easy to see that G|t acts on X to the left via left multiplication, and that X is a
(G|, Q)-equivalence.

REMARKS 2.19. 1. If G and H are equivalent via X, then H is isomorphic
to G. Indeed, given [z,y] € G, we know that r(z) = s°P(z) = r(y), by
definition. Hence there is an n € H so that yn = x. This 1 is unique, since
the action of H is assumed to be free, and the map [z,y] — 7 is easily seen
to be an isomorphism.

2. Given a groupoid G and a free left G-space X, there is an easily proved “dou-
ble commutant” theorem: G is isomorphic to G, where G has the obvious
meaning. o o

3. Equivalence of groupoids is an equivalence relation. Indeed, if X is o (G, H)-
equivalence and Y is an (H,K)-equivalence, then X xg Y is o (G, K)-
equivalence, where X g Y is the quotient of X xY = {(z,y) | s(z) =r(y)}
by the diagonal action of H : ((z,y),n) = (xn,1y).

The first assertion of the next proposition will be generalized to the topological
setting in Chapter 5. The second assertion is considerably more problematic in the
topological context.
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PROPOSITION 2.20. (i) If G is a transitive groupoid, then for any unit u €
GO, G and G|y, are equivalent;
(ii) Every groupoid is equivalent to a bundle of groups.

Proor. The second assertion follows from the first, since equivalence clearly
respects disjoint unions. The first assertion is a special case of Example 2.18. One
takes for T in that example, the singleton {u}. The assumption that the groupoid
is transitive is precisely the assumption that [u] = G©). O

DEFINITION 2.21. Two groupoids G1 and Gy are similar in case there are ho-
momorphisms ¢ : Gy — G2 and ¢ : Gy — Gy such that 1 o ¢ is similar to
the identity on Gy and ¢ o v is similar to the identity on Ga; i.e., ¢ o (x) =
b(r(z))zb(s(x))~t for a suitable function b : Ggo) — G2 and likewise for ) o ¢.

If groupoids are viewed as categories and homomorphisms are regarded as func-
tors, then “similarity” is simply a special case of the notion of equivalence of cate-
gories.

EXAMPLE 2.22. Continuing with the notation and assumptions of Example 2.18,
we show that G and G| are similar. For this, choose a cross section f for the re-
striction of s to GT, i.e., choose f : G — GT to satisfy so f(u) = u, u € GO.
Such a choice may always be made by the axiom of choice. Also, adjust f, if neces-
sary, so that f(u) = u for allu € T. Then the adjusted f is still a cross section to
the restriction of s to GT. Define ¢ : G — G|7 by ¢(z) = f(r(z))zf(s(z))~t. Then
a moment’s reflection shows that ¢ is a homomorphism from G to G|r. Such a ho-
momorphism is called a reduction (see Definition 4.13). Then take v : Glr — G
to be the identity map. Since f(u) = u, for u € T, ¢po1p is the identity on G|r. On
the other hand, ¢ o ¢ = ¢ is similar to the identity on G, via f. Thus G and G|r
are similar.

REMARK 2.23. It may be helpful to note that the proof of Proposition 1.18 really
is a special case of this last example. The map v produced there is the map f in the
example.

PROPOSITION 2.24. In the purely algebraic setting, two groupoids are equivalent
if and only if they are similar.

PROOF. Since both notions respect the formation of disjoint union, we may
assume our groupoids are transitive. Also, note that two groups are similar or
equivalent if and only if they are isomorphic. It suffices, then, to note that a
transitive groupoid G is similar to G/|y,) for any unit u € G . But this is just a
special case of Example 2.22, with T = {u}. O

The use of cross sections in the analysis of “similarity” indicates why the con-
cept of “equivalence” is preferable to “similarity” in the topological setting.

2. Topological Groupoids

In this section we develop some of the rudimentary facts about topological
groupoids.

DEFINITION 2.25. Suppose G is a groupoid with a topology and give G the rel-
ative product topology coming from G X G. Then G is called a topological groupoid
in case the map (x,y) — xy from G® to G, and the map z — =~ on G are
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continuous. If a groupoid G has a Borel structure such that G'® is a Borel subset
of G x G and the above maps are Borel, then we call G a Borel groupoid. If G is
a topological groupoid, we view G as having the Borel structure inherited from the
topological structure.

We assume, unless otherwise stated or implied by context, that our
topological groupoids are locally compact, Hausdorff, and 2°¢ countable.

It should be noted that in the important application of groupoids to geome-
try and, in particular, to situations where “germ groupoids” arise, non-Hausdorff
groupoids appear quite naturally. They are, however, locally Hausdorff, meaning
that each point has a Hausdorff neighborhood, and they are locally compact. It
turns out that this extended level of generality is sufficient to develop most of the
theory we describe here. Since extending the general discussion to non-Hausdorff
groupoids adds little to the points we are trying to make, we proceed with the Haus-
dorff hypothesis. However, we will say a few words about non-Hausdorff groupoids
later

Observe that if G is a topological groupoid, then the range and source maps
are continuous, since r(y) = yy~! and s(y) = v 1v. It follows that if, in addition,
G is Hausdorff, then G®) = {(a, 8)|s(a) = r(8)} is closed in G. Further, the unit
space G(® is a closed subspace of G since it is {y € G|y = r(7)}.

EXAMPLES 2.26. 1. Any locally compact group is a locally compact groupoid,
of course.

2. Of course, also, a locally compact Hausdorff space, viewed as a cotrivial
groupoid is a topological groupoid.

EXAMPLE 2.27. 1. If a locally compact group G acts on a locally compact
space X, then the transformation group groupoid, X X G, with the product
topology, is a locally compact groupoid.

2. If X is a locally compact space and if R C X x X is an equivalence rela-
tion that is locally compact with respect to the relative topology on X x X,
then R is a locally compact groupoid. In particular, the trivial groupoid on a
locally compact space is a locally compact groupoid. Significantly, however,
one often wants to consider relations that are endowed with topologies that
are different from the relative topology. These occur in many conterts; fre-
quently, they occur in the context of group (and groupoid) actions. Consider,
for example, the action of the integers on the circle described in Example 1.1.
If the angle a of rotation is irrational, then the map from T x Z to T x T
that sends (z,n) to (z,e'*™"2) is an isomorphism between the transforma-
tion group groupoid, T X Z, and its orbit equivalence relation R in T x T.
This relation is dense in T x T with respect to the usual product topology on
T x T, but if one transports the topology from T x Z to R then R becomes a
locally compact groupoid.

3. Let X be a locally compact space and let U = {Uqy}aeca be an open cover of
X . Let XY be the disjoint union of the sets inU; i.e., X¥ = {(z,a)|z € U,}
and let G¥ = {((z, ), (z,B)) |z € UoNUgs}. Then, of course, X is a locally
compact space and, with the relative topology, GY is locally compact. It is
a locally compact groupoid with respect to the operations defined as follows:

(6" = {(@,0),(.8)), (4,7), 4.0))) [« = y, B = }; the product is
given by the equation ((z,0),(x,0)) - ((z,0),(=,9)) = ((z,®),(z,0)); and

Do something
with non-Hausdorff
groupoids and cross
reference.



This will have to
be in Chapter V or
Chapter VII - prob-
ably Chapter VII
What to do about
Connes’s  theorem
relating measurable
Haarsystems?

24 2. GROUPOIDS AND GROUPOID C*-ALGEBRAS

(z,0),(z,8))" ' = (=, B), (z,a)). Of course, this groupoid is a special case
of the preceding example. However, it will turn out to be very useful later on.
For the record, we note that the groupoid cohomology of GY (to be discussed
later) is the same as the topological (Cech) cohomology of U. (One has to
specify the coefficients properly.) This observation was made by Mackey in
[120] and developed somewhat by Westman in [202]. See also [104].

4. The previous erample is also a special case of the situation we describe
now: Let G be a locally compact groupoid, let X be a locally compact space
and suppose there is given a continuous map ¢ : X — GO, Let G¥ =
{(z,7,9)|r(v) = ¥(z), s(v) = ¢¥(y)}. With the relative topology from
X x G x X, GY is a locally compact space and it is a locally compact
groupoid when the operations are defined by the formulae: (z,a,y)(y,8,2) =
(z,af,2) (no other pairs are composable), and (z,7v,y) ! = (y,v 1, z).

To develop an algebraic theory of functions on groupoids, one needs to hypoth-
esize the existence of an analogue of Haar measure, that we now define.

DEFINITION 2.28. A (left) Haar system on a groupoid G is a family {\"},cq
of non-negative (Radon) measures on G such that
(i) supp(\*) = G*, u e GO);
(ii) for f € C.(G), the function

u— /fd/\“

on G is in C.(G); and
(ili) for z € G, zX*@ = X" e [ f(zy) dN*@ (y) = [ f(y) dA"@(y).

We shall see plenty of examples of Haar systems shortly and throughout the
course of the rest of the monograph, but at the outset, it may be helpful to reflect
a little on the meaning of the conditions in the definition. First, observe that
condition (ii) implies that the map A : C.(G) — C.(G?)) defined by the formula
A(f)(u) = [ fd\* is a continuous linear map from C.(G) to C.(G(?)) where each
space is given the inductive limit topology. Further, it is a module map over
C.(G) in the sense that Ay - f)(u) = p(u)A(f)(u) for all f € C.(G) and all
@ € C.(G®), where ¢ - f(z) = ¢(r(zx)) f(x). Conversely, each such module map A
is determined by a family of measures {\*}, ¢ where supp(A\*) C G*, u € G(©
and the continuity condition (ii) is satisfied. Assuming condition (i) is tantamount
to assuming that A is surjective. Condition (iii) means that A is equivariant in
an obvious sense. We shall have more to say about Haar systems and families of
measures related to them later.

Unlike the case for groups, Haar systems need not exist, as we shall see in a
minute. Also, when a Haar system does exist, it need not be unique in any obvious
sense. To illustrate this second point, in a fairly emphatic fashion, consider

EXERCISE 2.29. Let G be the trivial groupoid on a locally compact Hausdorff
space X ; i.e., let G = X x X with the product topology. Then if \ is a fizred measure
on X with full support, i.e., supp(A) = X, and if \* is defined to be €, x A, then
{N\*}zex is a left Haar system on G. Conversely, every Haar system {\*},cx on
G may be written in this form for a positive measure A with full support.

While it is very often the case that Haar systems are not unique, when they
exist, in most cases of interest, there is a natural choice of Haar system. This is
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the case for transformation groups (see below) and groupoids of geometric interest
such as foliations and the tangent groupoid of a manifold. We will have more to
say about these later.

REMARK 2.30. The existence of a Haar system implies somewhat more reqular-
ity in a locally compact groupoid than is carried by the definition alone: If a locally
compact groupoid has a Haar system, then the range and the source maps are open.
This fact was asserted by Westman in [201] and by Renault in [171]. A proof may
be found in [195]. A minor modification of it works even in the non-Hausdorff
setting [145, Proposition 2.2.1].

The following proposition is Lemma 1.3 of [175]. It gives a conditioned converse
to this remark. First note that if G is a bundle of groups (see Example 2.2) and a
locally compact groupoid, then each of the groups G|, is a locally compact group,
and so carries an essentially unique Haar measure, u,. Of course the u, are not
really unique; any two are scalar multiples of one another. It is natural to hope,
however, that choices could be made so that they all could be pasted together to
yield a Haar system on G. The next proposition determines exactly when this can
happen.

ProrosritionN 2.31. If G is a locally compact groupoid that is o bundle of
groups, then G admits o Haar system if and only if the map p : G — G s
open. In that event, a Haar system {\"},cqw has the property that \* is a Haar
measure on G|,.

In [195], Seda shows that the following bundle of groups G does not admit a
Haar system: G = {(t,2) € [0,1] x T|z = 1, when ¢t > 1/2}. Of course, in this
example, the bundle map p is not open.

One might speculate that having open range and source maps is a sufficient
condition for a groupoid to have a Haar system. However, this is not the case. It
sometimes happens that if G is a locally compact groupoid and if R is its orbit equiv-
alence relation, i.e., the image of G in G(® x G(® under the map v = (r(7),s(7)),
then G can have a Haar system, while R does not. The groupoid R, however, does
have open range and source maps.

REMARK 2.32. Groupoid actions on locally compact spaces and on other topo-
logical spaces will play especially important roles in these notes. The notion of
groupoid action is defined in Definition 2.13; we keep the notation there. To say
that a left action is continuous, it is required that the map r : X — G© be con-
tinuous and open and that the map (v,x) — vz from G x X to X be continuous.
Likewise, in the case when G acts on the right of X, s must be continuous and
open and the map (x,7) — z7v from X x G to X must be continuous.. If X and G
are locally compact, then it is easy to see that so are the action groupoids G * X
and X * G. If, further, {\*},ccw is a Haar system for G, then {\"®) x e,},ex
is a Haar system for G x X ,while for X * G, {e, x \*®)},cx is a Haar system. In
particular, note that if G is a group with Haar measure A, then {e; X A}zex is a
Haar system for the transformation group groupoid X x G. Also note in particular
that the groupoid G®), which arises when G acts on G to the right (see Remark
2.14) has a Haar system {(\2)*}zeq, with (A\2)* := g, x X3,

There is a notion of imprimitivity groupoid in the topological setting and it has
a Haar system under suitable hypotheses. We will take these matters up in detail
in Chapters 5 and 7.

IOU
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A very important class of groupoids are the so-called r-discrete groupoids.
These are groupoids G such that G(® is open in G. (We have noted above that
G is always closed.) Such groupoids are generalizations of transformation groups
X x H, where H is assumed to be discrete. The presence of a Haar system on
an r-discrete groupoid forces a bit more structure on the groupoid. We state, for
future reference, the following proposition that may be found in [171], 1.2.7 and
1.2.8. It explains the terminology and identifies when a Haar system exists.

PROPOSITION 2.33. Suppose G is an r-discrete groupoid.

(i) For each u € G, G, and G*, with the relative topologies, are discrete
spaces.
(ii) If {\“}ycgo is a Haar system on G, then each A is a multiple of counting
measure on G*.
(iii) A Haar system exists on G if and only if r and s are local hormeomorphisms.

Thus, an r-discrete principal groupoid admitting a Haar system is, effectively,
an equivalence relation R contained in X x X, where X is locally compact and
Hausdorff, such that R has countable equivalence classes and is endowed with a
topology (possibly different from the relative topology) such that the left
and right projections of R onto X are local homeomorphisms.

It is also worthwhile to note that nowadays, the term ‘r-discrete groupoid’ is
taken to mean a locally compact groupoid on which the range and source maps are
local homeomorphisms. In the literature, r-discrete groupoids are also called étale
groupoids [?] and sheaf groupoids [103].

We conclude this section with several results about the structure of the neigh-
borhoods of G(9, in a locally compact groupoid G. These are reminiscent of famil-
iar facts from analysis on locally compact groups, but it takes a bit more work to
establish them. First a definition.

DEFINITION 2.34. A subset L of a topological groupoid G is called r-relatively
compact in case L N r~Y(K) is relatively compact (i.e., has compact closure in G)
for each compact subset K C G(©. s-relatively compact sets are defined similarly.

It is helpful to keep in mind the example where G is the open unit square and
L is an open strip with sides parallel to the diagonal.

REMARK 2.35. Observe that if L is r-relatively compact, and if K is relatively
compact in G, then K-L = K - (LNr (s(K))) is relatively compact in G. Also, if
G acts continuously (to the left) on a space X and if L is s-relatively compact subset
of G, then for all relatively compact subsets K C X, L- K = (LN s (r(K)))-K
is relatively compact in X .

LEMMA 2.36. [171, Proposition 2.1.9] Suppose G is a second countable, locally
compact, Hausdorff groupoid. Then G©) has a fundamental system of s-relatively
compact neighborhoods.

PROOF. Let V be an open neighborhood of G® and let {K;} be a locally
finite cover of G consisting of sets that are open in G(© and have compact
closures. Such a choice is possible since the hypotheses on G guarantee that G(©)
is paracompact. Choose open sets U; in G such that each U; contains K;, U; is
compact in G, and such that K; C U; C V N s Y(K;). Then U := UU; is an

open neighborhood of GO, contained in V, and U is s-relatively compact. This
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is because any compact set K C G(® meets only a finite number of the K;’s, and
so U N s~ 1(K) is contained in the union of finitely many U;, which is relatively
compact in G. O

DEFINITION 2.37. A neighborhood W of G is called is called diagonally com-
pact (resp. conditionally compact) if VW and WV are compact (resp. relatively
compact) for every compact (resp. relatively compact) set V in G. As with groups,
W is called symmetric in case W = WL,

LEMMA 2.38. [138, Lemma 2.7] If G is a second countable, locally compact,
Hausdorff groupoid, then G has a fundamental system of symmetric, open, condi-
tionally compact neighborhoods. In fact, if Wy is any neighborhood of GO, then
there is an open, symmetric, conditionally compact set Wy, with W diagonally
compact, such that

GO CWy CWoCW;.

PROOF. By Lemma 2.36, G(9 has a fundamental system of open, s-relatively
compact neighborhoods. If U is such a neighborhood, then U~! is open and r-
relatively compact. So Wy := U NU~! is symmetric and conditionally compact by
Remark 2.35. This observation shows, too, that Wy is diagonally compact. The
fact that we can arrange things so that Wy C W, follows from the fact that G is a
normal topological space — a consequence of our second countability assumption,
together with the assumption that G is locally compact. O

The next lemma was shown to us by Dana Williams.

LEMMA 2.39. With our standing hypotheses on G, let U be an open neighbor-
hood of G, and suppose that W is a diagonally compact neighborhood of G(®
contained in U. Then for every u € G, there is a neighborhood V, of u in G so
that V, W C U.

PRrOOF. Fix u € G9, suppose that no such neighborhood V;, may be found,
and let A be any compact neighborhood of u. Then for each open neighborhood V
of u, we can find ayy € V and an ny € W so that yyny ¢ U. By construction, the
net {yy} converges to u. On the other hand, the net {yyny } is eventually in AW, a
compact subset of G by hypothesis. Passing to a subnet and relabeling, if necessary,
we may assume that {yyny } converges to 7, say, in AG. But then, necessarily, {ny }
converges to 7. Thus n € W, since W is compact. Since yynpy = n € W C U,
{yvnv} is eventually in U, contrary to our initial assumption. O

The following proposition is a natural extension to groupoids of a well-known
fact from the theory of topological groups. In contrast to the group setting where
the proof is a simple consequence of the continuity of multiplication, the proof for
groupoids seems to require all that we have done in the last three lemmas. The
proof is due to Dana Williams.

ProprosITION 2.40. If G is a second countable, locally compact, Hausdorff groupoid,
and if U is a neighborhood of G in G, then there is a neighborhood V of G in
G such that V2 CU.

ProOF. First use Lemma 2.38 to choose a diagonally compact neighborhood
W of G(© contained in U. Then use Lemma 2.39 to find a (countable) cover {V;,}
of G(®) by open sets in G so that V,W C U, and V;, C W. Then V := U, V,, C W,
and V2 CVW = U2, V,W CU. O
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3. Groupoid algebras

Once a Haar system {A“}, () has been specified on a groupoid, we may define
an involutive algebraic structure on C.(G) by the formulae:

fxgly /f g(z™'y) dA" W) (z)
= [ fm)ga i 0 @),

and

fr(@) = fl@71),
f,g € C.(G). Tt is easy to verify that with respect to these operations and the
inductive limit topology C.(G) is a topological *-algebra. (If we wish to emphasize
the role of A in this structure, we write C.(G,\)). Examples will be given in a
moment, but first we want to introduce the primary objects of study in these notes.

DEFINITION 2.41. A representation of C.(G) is a *-homomorphism © from
C.(G) into B(H), for some Hilbert space H, that is continuous with respect to
the inductive limit topology on C.(G) and the weak operator topology on B(H), and
that is nondegenerate in the sense that the closed linear span of {n(f)¢ | f € C.(GQ),
&€ H} is all of H.

THEOREM 2.42. For f € C.(G), the quantity

| f1] :== sup{||7(f)|| | @ — a representation}

is finite and defines a C*-norm on C.(G). In fact, ||f|| < ||fll1, where ||f||1 s the
mazimum of sup,, [|f(z)|d\*(z) and sup,, [|f(z~")|dA\“(z). The completion of
C.G) in || - ||, then, is a C*-algebra, denoted by C*(G) or C*(G, N), and is called
the C*-algebra of the groupoid G (determined by A).

The proof will be given in the next chapter. It is a trivial consequence of
Renault’s disintegration theorem, Theorem 3.32. A straightforward computation
shows that the quantity || - ||; is a norm on C.(G) such that ||f*||r = ||fllr and
Ilf *gllr < IIfllzllgllz- Thus, the completion of C.(G) in || - |7, denoted LI(G) or
LT(G, ), is a symmetric Banach algebra. Its enveloping C*-algebra is C*(G).

EXAMPLES 2.43. (i) Let the groupoid G be X x H, where X is locally com-
pact and H is a locally compact group, acting on X on the right. Fix o Haar
measure g on H and for u € G (= X), set \* = €, x Ag. Then, as we
remarked in Remark 2.1/ (referring there to left actions) it is straightforward
to check that {\*},cqo is o Haar system. Furthermore, for f,g € C.(Q)
and (y,t) € G, we have by definition,

f*g,t) /f 2,9)g((z,5)  (y,£) AW (2, 5)
- / £, 9)g((ys, s~ (w,1) dley X Anr(s))
- / (. 9)g(ys, s7¢) dAgr (),

while f*(y,t) = f((y,t)~1) = f(yt,t=1). Thus, with respect to the opera-
tions, just defined, C.(G) is the algebra C.(X x H) discussed in Chapter 1
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and C*(QG) is C*(X, H). Note, however, that || - ||1 does not coincide with
the norm || - ||o defined in Chapter 1.

EXAMPLE 2.44. (ii) Let G be the trivial groupoid on a locally compact Haus-
dorff space X and let {\"},cx be the Haar system discussed earlier: \* =
€z X A, where X is a measure on X with supp(A\) = X. For f,g € C.(G) and
(z,y) € G, we have

f*mayr:/fmmm«mvr%%y»dv%wmm)
z/fWWM«w@@wDﬂ%wMWw)
=/fmmmumﬁwx

and f*(z,y) = f{(z,y)~') = f(y,x). Thus the *-product is simply com-
position of the kernels determined by f and g and the adjoint is conjugate
transposition. One expects, therefore, that in this case C*(G) is an ele-
mentary C*-algebra (i.e., C*(Q) is isomorphic to the compact operators on
some Hilbert space). This, however, requires still some technology. A clearer
understanding of the representations of C*(G) is necessary. The reader is
encouraged to investigate for him or herself what might be required, by trying
to prove that if X is a finite set of cardinality n, and if X is given by counting
measure, say, then C*(Q) is isomorphic to M,(C).

We note in passing that when our analysis of this example is complete, we will
have proved that C*(G) (G = X x X) is independent of A. In one sense, this is a
little surprising, but on reflection, it will prove to be quite natural. We note, too,
that the norm || f||; in this context is simply the supremum of the L!-norms of the
rows and columns of the kernel determined by f.

We will have a great deal to say about general representations of C.(G) in the
next chapter, but in advance of it, a special class deserves to be singled out. These
representations serve as analogues of the regular representation of a group.

DEFINITION 2.45. Let G be a locally compact groupoid with Haar system {A\*},cq©
and let i be a (Radon) measure on G(©.
(i) We write v =po X = [ X*du for the measure on G defined by the formula
Jo f@)dv(z) = [50) f(x) dX*(x) du(u). We call v the measure induced by
u, and we write v=1 for the image of v under the homeomorphism © — =1
(ii) For f € C.(G), Ind u(f) is the operator on L%(v~") defined by the formula

ndu(1)é(e) = [ F)E "2 V) (o)
= [ &)

(One checks with a little work that ||Ind u(f)|| < ||fllr end that Ind p is
a representation of C.(G) in the sense of Definition 2.41.) As the nota-
tion suggests, Ind p is called the induced representation determined by (the
multiplicity free representation of C*(G(®) = Co(G©) associated with) pu.

It is easy to check that in the case when the groupoid is a transformation group
groupoid, then the definition of Ind y just given coincides with that in Example 1.7.
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Although the details are a little tedious, it is not hard to show that Ind p is the
direct integral fgﬁo) Ind(e,) du(u) and Ind p is a faithful representation of C.(G),
if supp(u) = G@. Note, however, that a representation may be faithful on C.(G)
without being faithful on C*(G). Indeed, if G is a nonamenable group, then there
is essentially only one measure p on G0 = {e}. In this case Ind p is the regular
representation and has a nontrivial kernel.

The notion of amenability makes sense in the groupoid context, too, but until
recently has proven to be more refractory than in the group theoretic setting. See
[?]. We will discuss it at greater length in Chapter 6. For the moment, we are
content to present the following definition.

DEFINITION 2.46. The reduced C*-algebra of the groupoid G, C}y(GQ) orCl (G, N),
is defined to be the completion of C.(G, ) in the norm

1£lrea = sup{l| Ind eu(f)I| | w € GO}

By the remarks preceding the definition, ||f||rea = || Ind u(f)|| for any measure
u, with supp u = G(©. Note, too, that for v € G, Ind €r(y) is unitarily equivalent
to Ind €,(,). Indeed, translation by v implements the desired unitary equivalence.

We record the following proposition for future reference. When specialized to
the case when G = {1,2,--- ,n}?, one sees that Ind€, of C%,(G) is nothing more
than the (left) representation of M,,(C) on the column indexed by u.

PROPOSITION 2.47. If G is the trivial groupoid on a locally compact Hausdorff
space X and if {\" },cx is given by a measure X with supp(X) = X, then C},4(G, A)
is isomorphic to K(L?*()\)).

PRrROOF. By definition, || f||lrea = sup,cg© {||Inde,(f)[|}. Since G is transitive,
Ind ¢, is unitarily equivalent to Ind e, for all u,v € X. Thus ||f||rea = || Ind €, (f)||,
for any v € X. But Inde, acts on L2(r 1), where v = €, X \. Sov ! = A x ¢,
and the map W : L?(v~!) — L?()\) defined by (W¢)(z) = &(z,u) is a Hilbert
space isomorphism satisfying W Ind e, (f)W ! = 7(f), where 7 (f) is the operator
on L*()) defined by the formula 7(f)¢(z) = [ f(z,y)&(y) dA(y). O

In the case when G is an r-discrete principal groupoid with a Haar system A,
one may scale A so that it is given by counting measures, and then the algebraic
operations on C.(R) are given by the formulae:

axb(zr,y) = Z a(w, 2)b(2,y)

z

a*(z,y) = a(y, ).
That is, elements in C.(R) and, by extension, in C*(R) may be regarded as matrices
indexed by R. (Just as in the case of transformation groups, without some sort of
hypothesis relating to amenability, elements in C*(R) may be viewed as matrices
only at a formal level.) We will see in Chapter 8 that C*-algebras representable
essentially as C*(R), for a suitable amenable r-discrete R, may be given an intrinsic
characterization. We regard this as a fundamental coordinatization result.



CHAPTER 3

Representations of Groupoids

Our main objective in this chapter is to prove Renault’s disintegration theorem
[171]. As we indicated in the preface, our proof will be complete except for two
details, which we discuss later. The first section is devoted to outlining the theory of
Borel Hilbert bundles; i.e., direct integral theory. Much of the material here is well
known. The difference between what we present and what is found, say, in Dixmier’s
treatise [55], is simply a matter of emphasis. Our presentation and notation follow
Ramsay’s articles [157] and [159] fairly closely. In the second section, we develop
what we need about quasi-invariant measures. The third section is devoted to
Renault’s disintegration theorem and some of its immediate applications.

1. Borel Hilbert Bundles

The reader should keep in mind the perspective we are emphasizing in these
notes: Groups are represented on Hilbert spaces, groupoids are represented on
Hilbert bundles. The bundle concept is a familiar one, even if it is not immediately
recognized as such; it appears in many guises. Set theoretically, a bundle of vector
spaces, say, is simply the disjoint union of a family of vector spaces. Suppose, to be
specific, that V = {V(z)},ex is a family of vector spaces indexed by a set X. We
don’t assume at the outset that V is disjoint. However, to “make them disjoint” we
form the set XV := {(z,&) | £ € V(x)}. Of course, then, X %V is the disjoint union
of the spaces {z} x V(z) which may be and often are identified with V(z). From
time to time, it will be convenient to make this identification without fanfare to
lighten the notation. We shall do this freely later on, but in this chapter we shall be
fairly meticulous about the notation. Let 7 : X *) — X be the natural projection,
7(x,€) = z. We call X %V or the pair, (X *V, 7), a (vector) bundle over X. For each
z in X, the space V(z), which we identify with 77 (z) = {z} x V(z), is called the
fibre over x. Note that when the V(z) all coincide with a fixed space V', then X %V is
simply X x V.1 Such a bundle is called trivial. The fibre over each point is a copy of
V. A section of the bundle or a vector field is simply a function f : X — X %) such
that 7(f(z)) = = € X. Sections of the bundle X %)V are closely linked to elements
of HyexV(x); ie. to functions ¢ : X — UzexV(z) such that ¢(z) € V(z), for all
z € X. Indeed, given a section f, we may write f(z) = (z, f (2)), for a uniquely
determined element f € I,cxV(x); and given an element f € I,cxV(z), defining
f(z) := (z, f(z)), determines a section. Because of this close link between sections
of X *V and elements of II,c x V(x), we will often abuse notation and write f(z) for
(z, f(z)). However, when it is useful to make the distinction between sections and

IThroughout, we will use calligraphic letters, such as V, to denote bundles. The fibre of V
over z will then be denoted V(z). Individual spaces of the same sort as the fibers, but without
reference to any particular bundle will be denoted with normal letters, e.g., V. Thus, throughout,
H’s denote Hilbert bundles, while H’s denote Hilbert spaces.

31
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elements of the product, we will continue to attach a hat ~ to the latter. Of course,
when X x) = X x V is trivial, then a section f uniquely determines and is uniquely
determined by a function f : X = V. Obviously, sections may be added pointwise
and they may be multiplied by scalars. If the vector spaces V(z) have additional
structure, then the sections inherit this structure. If, for example, each V(z) is an
algebra, then the sections form an algebra under pointwise multiplication.

In analysis, one is interested in sections that are measurable, continuous, or
smooth in some sense. These concepts require some structure on the bundles in
question. Thus when discussing measurable sections one needs a Borel structure
on the bundle; continuous sections require a topology, etc. The problem is that one
may place a Borel structure or a topology on a bundle, but there is no reason a
priori for there to be any sections that are measurable or continuous. In geometry,
where one is interested in smooth bundles, one usually restricts attention to locally
trivial bundles. However, in the setting of these notes, where infinite dimensional
fibres are common and where there is no natural local trivialization in sight, it
is convenient simply to prescribe the structure (measurable or topological) on the
bundle by prescribing a set of sections. We are thus led to

DEFINITION 3.1. An analytic Borel Hilbert bundle is vector bundle (X *H, ),
where each space H(z) is a Hilbert space and where X x H is endowed with an
analytic Borel structure such that the following axioms are satisfied:

1. A subset E in X is Borel if and only if m—*(E) is Borel.
2. There is a sequence {fn}>2, of sections, called a fundamental sequence,
such that
(a) each function f, : X x H — C, defined by the formula f,(z,&) =
(fn(x)ag)ﬂ(z)a is Borel,
(b) for each pair of fundamental sections, f, and fp,, the function x —
(fn(w)afm(m))’l{(z) is Borel, and
(c) the functions {fn}52, together with m separate the points of X * H.

As is customary, we shall usually refer to an analytic Borel Hilbert bundle
simply as a Hilbert bundle. Also, if the Borel structure happens to be standard,
which usually will be the case, we may speak of a standard Borel Hilbert bundle.
Later, we will have to consider topological Hilbert bundles and then we will have
to be a bit more careful to distinguish among the various notions. Fortunately,
one can usually tell from context which notion of Hilbert bundle one is considering.
Also, as is customary, when dealing with a Hilbert bundle X % H, we shall usually
drop the subscript H(z) on the inner products. This should cause no difficulty.

We state for emphasis the following proposition, whose proof may be assembled
from arguments in [157, p. 265] and [159, Section 1].

PROPOSITION 3.2. Given the set X % H, where X is an analytic Borel space
and H is a family of Hilbert spaces indexed by X, and given a family of sections
{fn}S2, satisfying the conditions 2(b) and 2(c) of Definition 3.1, there is a unique
Borel structure on X x H so that (X * H,m) becomes an analytic Borel Hilbert
bundle and the sequence {f,}°2, becomes a fundamental sequence for the bundle.
If the Borel structure on X is standard, the same will be true of the induced Borel
structure on X x H.

If (X *+H,n) is a Hilbert bundle over X with a fundamental sequence {f,}52,
then it is not hard to see that a section f : X — X %« # is Borel if and only if
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the function on X, z — (f(x), fn(z)), is Borel for each n. Note, too, that for each
z € X, the fibre H(z) is spanned by the vectors f,(z). (This is a consequence
of condition 2(c) in Definition 3.1. We write B(X x #) for the space of all Borel
sections for the Hilbert bundle (X *#, 7). The uniqueness assertion of the preceding
paragraph means, in particular, that the Borel structure on a Hilbert bundle is
independent of the particular fundamental sequence used provided, of course, that
each term in one sequence is Borel with respect to the structure defined by the
other and vice versa. The space B(X x H) evidently is a module over the space
B(X) of all complex-valued Borel functions on X:

(o (@) = p(2) f(2) = (z,0(2) f (),

p € B(X), and f € B(X = H). It is useful to note that one may apply the Gram-
Schmidt orthogonalization process pointwise to a fundamental sequence {f,}°2,
and arrange to have the non-zero vectors in { f,(z)}%2; form an orthonormal basis
for H(z), for each z in X. Using such an “orthonormalized” fundamental sequence
and Parseval’s identity, it is easy to prove that for every Borel section f, the real-
valued function = — || f(z)|| is Borel. In summary, the space B(X * H) satisfies the
conditions place on the space S in Definition 1 of [55, I1.1.3].

DEFINITION 3.3. Given a Hilbert bundle (X xH, ) and a measure p on X, we
write L2(u, ) or [ H(z)dp(z) for {f € B(X xH)| [ ||f(@)||* du(z) < oo} and
call this space the direct integral of X *H or the space of square integrable sections
of X xH.

Of course this space is a Hilbert space. What we are presenting, really, is
nothing more than the concept of direct integral presented, say, in [55, Chapter II].
We are simply adding the emphasis on the Borel structure on X * H.

Some examples are in order. First, of course, there are the trivial bundles, i.e.,
bundles of the form X x H, where now H is a single Hilbert space. The Borel
structure is the product Borel structure, where H is given the Borel structure
determined by either the weak or norm topology - for separable spaces, these two
are the same. Sections of this bundle, then, are nothing other than H-valued
functions. A fundamental sequence is nothing but a point separating sequence of
H-valued functions on X such that the values at each  generate H. More generally,
suppose the space X is decomposed into the countable disjoint union of nonempty
Borel subsets, X = UX,,, and suppose that for each n there is given a Hilbert space
H,. Let X xH = U(X,, x H,) with the obvious Borel structure and fundamental
sequence. Then it is not hard to see that this X % H is a Hilbert bundle. In a
sense that will be made precise in a moment, every Hilbert bundle is isomorphic
to one of this kind. Thus, one might think that the theory is trivial; that it is
unnecessarily laden with heavy notation. The point that one should keep in mind,
however, is that Hilbert bundles are often presented in ways where it is not clear
how to “trivialize” them in the fashion just discussed, and even when it is, the
trivialization may not have anything to do with context in which the direct integral
arose.

To illustrate this, we consider one of the most common ways that Hilbert bun-
dles and their direct integrals arise: through the process of disintegrating a measure.
This will be very useful as we proceed and so we pause to present a result that is
one in a long line of decomposition theorems. (See [53, 90, 141, 180] and the
discussion in Section 11 of [115]. ) The formulation we give here is essentially
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Hahn’s variation [87, Theorem 2.1] of a result due to Effros [61, Lemma 4.4]. (See
also Théoreme 2 in [24, Sect. 3, No. 3].) First, a definition.

DEFINITION 3.4. Let w: X — Y be a Borel surjection between Borel spaces X
and Y. A family of measures & = {ay }yecy indexed by Y is called a Borel 7-system
or a Borel system of measures for m, in case for eachy € Y, suppa, C ' (y) and
for each non-negative function f on X, the function a(f)(y) := [ f(z)doy(z) is a
measurable function on'Y .

REMARKS 3.5. We are interested in this monograph only in the case when X
andY are countably generated Borel spaces (as mentioned in the prefeace) and when
the measures oy, are sigma finite. This assumption will tacitly be in force whenever
such systems are discussed. In fact, we shall often assume that our w-systems satisfy
a stronger condition called properness. A Borel w-system « is proper in case there
is a non-negative function f such that a(f) = 1.

Ezxamples of such systems are easy to come by. Of course, every Haar system is
a Borel r-system (a fact that causes the English speaking world a little discomfort.)
Haar systems are, in fact, continuous and the gemeral notion of continuous m-
systems make sense, when m : X = Y is a continuous map between topological
spaces. We will discuss these further in Section 4 of Chapter 5.

THEOREM 3.6. Let (X,)\) be an analytic Borel probability space and let v be
a o-finite measure on X which is equivalent to X\. Let Y be a countably generated
Borel space and suppose that m : X — Y is a Borel surjection. Suppose p = w(\)
and set P =dv/d\. Then

L. There is a Borel w-system v = {vy}ycy, where each vy is o-finite, such that
for each non-negative Borel function f on X, [ fdv = [ ([ fdv,) du(y).

II. The map y — vy is uniquely determined up to a p-null set.

IIL. If {\y}yey is the m-system determined by X, then p-almost every A, is a
probability measure. Moreover, in this case, vy s equivalent to Ay for u-
almost all y and for each y outside a p-null set, the restriction of P to
71 (y) is a version of the Radon-Nikodym derivative duv,/d)\,.

DEFINITION 3.7. In the notation of the theorem, we write v = [ v,du(y) and
we call the triple ({vy}yev, p, ™) the w-decomposition of v.

We remark in passing that it is not necessary to have u be the image of a
probability measure on Y. One can replace u by an equivalent o-finite measure, but
then one must multiply each v, by a suitable scalar. Once p and v are fixed, the
vy are uniquely determined modulo a p-null set.

EXAMPLE 3.8. In the setting of the theorem, let H(y) = L?*(v,) to obtain a
bundle Y x H over Y. The Borel structure on Y = H is given by a sequence of
sections {fn}2, defined as follows. Choose a sequence of bounded, non-negative,
Borel functions {g,}52; on X that separate points. Define f,,: X = Y xH by the
equation fn(y) = (y, fa(y)), where fu(y;7) = gn(x)P~2(z), € 7~1(y).2 Using
Theorem 3.6, it is easy to check that conditions 2(b) and 2(c) of Definition 3.1 are
satisfied by this sequence of sections, and so by Proposition 3.2, there is a unique

21f f : A+~ B is function and if, for each a € A, f(a) is itself a function on a set Q, then
we shall separate the two independent variables by a semicolon and write f(a;w) to denote the
values of the function f(a). While this notation may appear a little cumbersome at first glance,
we have found it useful for clarifying the rolls that certain constructs play in the theory.
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analytic Borel structure on'Y = H making it a Hilbert bundle. Moreover, the map
W L3(X,u) — f}? H(y) du(y), defined by the formula

[ €&@), zeni(y)
wowa) ={ ¢ TET
is a Hilbert space isomorphism. This bundle may be written as the disjoint union
of trivial bundles, but the process requires that rather arbitrary (but measurable)
choices be made and there is no canonical or otherwise preferable way to do so.

EXAMPLE 3.9. As another example of a Hilbert bundle that will be of use to us,
but which cannot usually be trivialized in any natural way, consider a locally compact
groupoid G with a Haar system {\*},cco - Let H(u) = L2(A%), u € G, to get
the bundle that we shall denote G(© x L>()\). The Borel structure on G© x L?(\)
is determined by a sequence of sections {£,}5, defined as follows. Choose a point-
separating sequence of functions {f,}2, in C.(G) and define &, : G© — G «
L2()\) by the formula

n(u;7) = fu(2), = € G

One checks easily using the properties of the Haar system that conditions 2(b) and
2(c) of Definition 3.1 are satisfied so that there is a unique analytic Borel structure
on GO « L2(\) — in fact, it is standard — making it o Hilbert bundle over G(®.
For reasons that will be made clear shortly, this bundle will be that associated to the
left regular representation of G.

Given Hilbert bundles X;*H;, i = 1, 2, the notion of a bundle map from X; xH;
to Xo *x Ho makes perfectly good sense: It is a pair (7,7, where 7 : X; — X5 is
amap and T : X; * H1 = Xo x Hs is also a map, such that for each z € Xj,
there is a linear map T'(z) : Hy(z) = Ho((z)) such that T(z,€) = (r(z), T (2)E)
for all (z,€) € X1 xH1. We will want to assume that 7 and T are Borel maps, of
course. One usually says that the map T covers 7. We are particularly interested
in the situation when X; = X5 := X, say, and the bundle maps involved cover the
identity map on X. We write the collection of all such maps as Hom (X * H1, X x
‘H2). Evidently, this space may be identified with the Borel sections of the bundle
X+«B(H,, Ha) :={(z,A)| z € X, A€ B(Hi(x),Ha2(x))}, where we give this bundle
the Borel structure making the maps

(.’L‘, A) - (Afl,n(m)a f2,m(x))

all Borel, for any fundamental sequence {f; ,}o2; for X *#H;. Then the Borel struc-
ture on X * B(H,, Hz2) is analytic and is standard if the Borel structure on each of
the bundles is standard. A bounded Borel section of this bundle, A, gives rise to a
decomposable operator from [ )? Hi(z) du(z) to [ )62 Ha(z) du(x) which we also de-
note by A: A¢(z) = A(z)é(z), for € € / )6; Hi(z) du(x). These operators intertwine
the multiplication representations of L*°(X,u) on the two direct integrals. Con-
versely, as is well known (see [10] and [55]), every operator that intertwines these
multiplication representations of L (X, u) is given by a bounded Borel section of
the bundle X x B(H,,H2), i.e. a section A such that sup |A(z)|| is finite.

DEFINITION 3.10. Given Hilbert bundles X xH;, i = 1,2, over the same space
X, a (fibre preserving) isomorphism from X x H; to X = Ho is a (Borel) section
V of X « B(H,,Ha) such that V(x) is a Hilbert space isomorphism for each x.
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Two Hilbert bundles over the same space are called isomorphic if there is a fibre
preserving isomorphism between them.

We have anticipated the following proposition earlier. The proof may be found
in [55, 159].

PROPOSITION 3.11. Given a Hilbert bundle X * H, let X, = {z|dim(H(z)) =
n}, n=1,2--- 00, and let H, be a Hilbert space of dimension n. Then X xH is
isomorphic to U X, x Hy,.
ne{l,2,---,00}
The sets X,, in the proposition are sometimes called the sets of constant or
uniform multiplicity for the bundle. In Example 3.8, the set of constant multiplicity
n is the set on which 7 is n to 1, provided this set is not null.

DEFINITION 3.12. Given a Hilbert bundle X * H, we write Iso(X = H) for
{(z,V,y)| V : H(y) —» H(z) is a Hilbert space isomorphism} endowed with the
weakest Borel structure so that the maps

(z,V,y) = (Vfu(y), fm(=))

are Borel for every n and m, where {f,}°2, is a fundamental sequence for X = H.

Of course Iso(X *H) is a groupoid in the operations described in Example 2.2.
Its unit space is naturally identified with X. In fact, Iso(X *7{) is an analytic Borel
groupoid in the sense of Definition 2.25, as is transparent from the easily proved

PROPOSITION 3.13. If the Hilbert bundle X xH is Borel isomorphic to |J X, %
H,,, where X is the disjoint union of the X,, and H,, is a separable Hilbert space?,
then Iso(X *H) is Borel isomorphic to |J X, XU (H,,) x X,,, where X,, xU(H,) x X,
is the Cartesian product of the trivial groupoid, X, x X,, endowed with the product
Borel structure, and U(H,) — the Borel group of all unitary operators on H,
endowed with the Borel structure determined by the weak operator topology.

2. Quasi-invariant Measures

We are almost at the point where we can define a representation of a groupoid
G. Tt will certainly involve a Hilbert bundle G(©) x # over the unit space G(® of G
and it will involve a Borel homomorphism of G into Iso(G(®) x#). The one missing
ingredient is the notion of a quasi-invariant measure on G(°). In order to make this
precise and to develop a few useful properties of quasi-invariant measures, we need
first to say a few words about “fibred products of disintegrated measures”. We
follow [157].

Suppose that for ¢ = 1,2, we are given an analytic Borel measure space X;
with a o-finite measure v;. Suppose, too, that we are given a third such measure
space with probability measure (Y, u), and Borel surjections 7; : X; — Y that
yield 7m-decompositions as defined in Definition 3.7, ({viy}yev, #, 7). Thus v; =
[ viydu(y), i = 1,2. Form X; * X := {(z1,22) € X1 x Xo| mi(z1) = m2(22)}.
This is a standard Borel space and there is an obvious Borel surjection 7 mapping
it onto Y. For each y € Y, the measure vy 4 X 5, is a measure on X; x X, with
support in the set {(x1,z2)| m1(z1) = ma(z2) = y}. Furthermore, if f is a non-
negative Borel function on X; x X», and if fO(y) is defined to be [ f d(v1y X vay),
then f° is a Borel function on Y. This is evident for functions that are products

3This need not be the decomposition of X % 7 in terms of the sets of uniform multiplicity.
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of functions in each of the variables separately and so the assertion follows from
linearity and the monotone convergence theorem. We define the measure vy * vy
to be [ w1y X va,du(y); that is, for non-negative Borel functions f on X; x X,
J fd(vi x ) = [ fOy) du(y), by definition. It is clear that vy * v, is supported on
X1 * Xy and ({v1,y X v2y}yey, 4, m) is its m-decomposition by definition.

It is worthwhile to note, too, that if p; : X1 * X2 — X;, ¢ = 1,2, is the canonical
projection, p;(x1,x2) = x;, then p; is a Borel map that is surjective because each m;
is surjective. We may therefore consider the decompositions of v; x v with respect
to each p;. The result, proved in [157, p. 266] on the basis of Fubini’s theorem, is

VL XUy = /ezl X Vo, 71 (21) dry (.’l]’l)

= /VI,TA'Q(:EQ) X €g4 dVQ(.Z'Q),

where, recall, €,, denotes the point mass at z;.

DEFINITION 3.14. Let G be a locally compact groupoid with Haar system {A\*},cq©
and let i be a (Radon) measure on GO, If v = [ A*du(u) := po X is the induced
measure on G (see Definition 2.45) and if v=1 is its image under inversion, then we
call the measure p quasi-invariant (q.i.) in case v and v=' are mutually absolutely
continuous. In this case, we write A for the Radon-Nikodym derivative dv/dv—!
and call it the modular function or modulus of pu. If the A = 1 a.e. v, i.e., if
v =v"1, then we say that the measure y1 is invariant.

The reason for the terminology “modular function” is that A behaves very
much like the modular function for a locally compact group. In particular, it is
a homomorphism from G to the positive real numbers under multiplication ]Rj;.
Of course, this statement is a bit imprecise, since A is not uniquely determined.
The precise statement follows, a proof will be given in Chapter 4, as a corollary of
Theorem 4.16.

THEOREM 3.15. [87, Corollary 3.14] Given a quasi-invariant measure y on the
unit space of a groupoid G with Haar system {\"},cq, it is possible to choose the
modular function of p, A, to be a Borel homomorphism from G to R} . Moreover,
if W' is another quasi-invariant measure on GO that is equivalent to p, so that
u' = gu, for a suitable non-negative function g, and if A' is the modular function
of ', then A'(z) = g(r(z))A(z)g(s(z))~! a.e. v, where v is the measure induced
by p. In particular, p is equivalent to an invariant measure if and only if A(z) =
g9(r(x))g(s(z))™L, a.e. v, for some non-negative function g.

EXERCISE 3.16. If G = X x H is the transformation group groupoid deter-
mined by the action of a locally compact group H on the locally compact space X,
as discussed in Chapter 1, and if A* = €; X Ay, giving the Haar system discussed
in Chapter 2, then a measure p on X = G is quasi-invariant in the sense of Def-
inition 3.14 if and only if it is quasi-invariant in the sense of Chapter 1, Definition
1.10. Moreover, the modular function A of p is given by the formula A = J -9
where J is the function defined in Chapter 1 and 6 = d)\H/d)\I_{1 is the modular
function of H. Thus, if H is unimodular (0 = 1), then p is invariant under the
action of H if and only if it is invariant in the sense of Definition 3.14. (See [123,
p. 198] [157, Theorem 4.3] and [87, Example 3.16].)
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EXERCISE 3.17. Suppose that X is a locally compact space and that G is the
trivial groupoid X x X. We give G the Haar system defined by the formula \* =
€z X\ for some prescribed measure A on X with full support (see Chapter 2, Exercise
2.29). Then a measure p on X is g.i. if and only if p ~ \. In this case, v = p X A
and A(z,y) = g(x)/g9(y), a.e. v, where g = dp/dA.

REMARK 3.18. The question immediately arises: For a general locally compact
groupoid G with Haar system {\"},cqwo, do quasi-invariant measures exist on
G© 2 The answer is yes. To see this, let po be any probability measure on G and
let vo := [ X*du(u). Then vy is a o-finite measure on G that is usually not finite.
Let v be a probability on G that is mutually absolutely continuous with vy and define
1 to be the image of v under s. Then, in a rather straightforward fashion, one can
prove that p is quasi-invariant and, further, that if po is quasi-invariant to begin
with, then po is equivalent to . The details may be found on pages 24 and 25 of
[171]. The measure p is called the saturation of ug. It is sometimes written [uo).

In the language of Chapter 2, Definition 2.4, the modular function of a quasi-
invariant measure is a cocycle, the modular functions of two equivalent measures
are cohomologous, and a measure is equivalent to an invariant measure if and only
if the modular function is a coboundary. Example 3.17 shows that the modular
function of a quasi-invariant measure on a trivial groupoid is a coboundary. This is
not too surprising, given Proposition 2.5. In fact, the proof presented there works
here, too.

PROPOSITION 3.19. If G = X x X is the trivial analytic Borel groupoid deter-
mined by an analytic Borel space X, and if ¢ : G1 — G4 is a Borel homomorphism
from G1 to an analytic Borel groupoid G, then ¢ is a Borel coboundary; that is,
there is a Borel map b: X — G2 such that ¢(x,y) = b(x)b(y) L.

PROOF. The point is that since ¢ is Borel, so is b, defined by the formula,
b(z) = ¢(z,y0), for any prescribed yq. 0

The problem with cocycles in the Borel setting is the intervention of null
sets. We discussed this some in Chapter 1 and we will come to grips with it
more thoroughly in Chapter 4. For now, we present the theorem, due to Ram-
say [157, 161], that allows us to sweep most of the difficulties caused by null
sets aside. To state it, we need a bit more notation. Let G be a locally compact
groupoid with Haar system {A*},cq . Consider the set of composable pairs from
G,G? = {(z,y) € GxG | s(x) = r(y)}. This is the fibred product of G with itself
determined by 7 and s. If 4 is a measure on G(°), with induced measure v = g o A
on G, then the fibred product ¥ is the measure on G? with decomposition

v = / A X A% dp(u),

where A, is the image of A\* under inversion. (Thus, in particular, the support of A,
is G,.) It might be preferable to denote v by v~! % v, given the earlier notation.
However, the notation v is the one most commonly found in the literature.

The following theorem will be proved as Theorem 4.16 in Chapter 4. The proof
is given in two steps. First one proves [157, Theorem 5.1], and then [161, Theorem
3.2]. We state the result here for the purpose of reference and emphasis.
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THEOREM 3.20. [157, Theorem 5.1][161, Theorem 3.2] Let G be a locally com-
pact groupoid with Haar system {A\"},cqo) and let H be an analytic Borel groupoid.
Let p be a quasi-invariant measure with induced measure v=po . If ¢ : G - H
is a Borel map such that

v ({(@,9) € G | go(@)g0(y) # dolay)}) =0,
then there is a Borel homomorphism ¢ : G — H such that ¢g = ¢ a.e. v.

A map of the form ¢q is called an a.e. homomorphism. Thus, an a.e. homomor-
phism is almost everywhere equal to a homomorphism. The proof rests, in part, on
the following lemma, also due to Ramsay [157, Lemma 5.2], which we shall prove in
Chapter 4, Lemma 4.9, and which will be used explicitly in our proof of Renault’s
disintegration theorem.

LEMMA 3.21. Let p be a quasi-invariant measure on G© and let ¥ be a subset
of G that is closed under multiplication and that contains a v-conull subset of G,
then there is a conull Borel subset U of G gsuch that the reduction Glu CX.

3. Renault’s Disintegration Theorem

A Hilbert space representation of a groupoid must take place in the isomorphism
groupoid of a Hilbert bundle in the sense of

DEFINITION 3.22. Let G be a locally compact groupoid with Haar system {A\"},cq© -
A representation of G (and \) is a triple, (u, GO xH, L) where p is a quasi-invariant
measure on G0, G xH is a Hilbert bundle over G©, and L : G — Iso(G'©) x H)
is a Borel homomorphism that preserves the unit space G© in the sense that
L(z) = (r(z),L(z), s(z)), where L(z) : H(s(z)) — H(r(z)) is a Hilbert space iso-
morphism.

REMARK 3.23. Quite frequently, when studying representations of groupoids,
one first encounters or produces an a.e. representation, i.e., an a.e. homomorphism
of a groupoid into the isomorphism groupoid of a Hilbert bundle. This will be the
case, in particular, in the proof of the Renault’s disintegration theorem, Theorem
3.82. An a.e. representation, then, consists of a quasi-invariant measure u, a Hilbert
bundle GO x H on GO, a conull subset U of G°), and a Borel map L : G|y —
Iso(G) x H|y), where G©) % H|y is just the restriction of GO xH to U, such that

1. L(z) : H(s(z)) — H(r(z)) is a Hilbert space isomorphism and L(z) =

(r(x), L(z), s(x)) for v-almost all x € G|y .

2. L(u) = I, the identity operator on H(u), for p-almost all u € U.

3. L(z)L(y) = L(zy), a.e. v?, and

4. L(z) ' = L(z™1), a.e. v.

By Theorem 3.20 there is a representation that agrees with L almost everywhere
with respect to v.

If p is a quasi-invariant measure on G©) and if U is a conull Borel set in G(?),
then G|y is called an inessential contraction or an inessential reduction of G. As we
shall see, when dealing with the measure theoretic aspects of groupoids, inessential
contractions appear quite frequently. For our immediate purposes, they play a role
in the notion of equivalence of representations.
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DEFINITION 3.24. Two representations (i, G x H;, L;), i = 1,2, are called
equivalent if and only if u1 ~ pe and there is a fibre preserving isomorphism

V(GO s M)y = (GO o)y,

where U is a conull subset of GO, such that

A~ A N

V(r(2))L1(2) = La(@)V (5())
forxz e Gly.

From the perspective of Definition 4.10 in the next chapter, equivalent repre-
sentations really ought to be called weakly equivalent. However, the terminology
just presented has become accepted.

PROPOSITION 3.25. Let (u, G xH, L) be a representation of the locally com-
pact groupoid G with Haar system {A\"},cqo. For f € C.(G) and & and n in
fgo) H(uw) du(u) the equation,

n) = / F@)E@)E(s(@)), n(r(2))) duo (@),

where vy := A~3v, defines a representation of C.(G) on f(?(o) H(z) du(z) and the
inequality, |L(f)|| < ||fll;, is satisfied for all f € C.(G). Moreover, equivalent
representations of G yield unitarily equivalent representations of C.(QG).

PRrOOF. The proof is straightforward and the details may be found in [171,
Proposition II.1.7]. We include only the proof of the boundedness to show why
the “symmetrized” measure vy is used. Evidently, |f(z)(L(z)¢(s(x)),n(r(z)))| <
[ f(@)] 1€(s(x))]| In(r(z))|| - So the expression defining (L(f)¢,n) is dominated in
absolute value by

JIE@IEC@ @) dn@ = [ (8 4@ €@ InC@)) 17@)] @)

Applying the Cauchy-Schwarz inequality, we see that this is dominated, in turn, by

(/A" @lee@I @) ) (It i )|dy(x))%

Using the facts that v = po A and v—! = A~1dv this product may be rewritten as

(1501 @l a0 ([ 1501 @ ool )

which, from the definition of the I-norm, is dominated by

(007 1) - (107 ialt) = 071, Nl il

This completes the proof. O

DEFINITION 3.26. The representation L of C.(G) determined by a represen-
tation (u,G® % H,L) of G in Proposition 3.25 is called the integrated form of
(1, G© s« H, L) and (p, G % H, L) is called the disintegrated form of L.
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Before turning to some examples, it is worthwhile to note that rather than
expressing L(f) through the sesquilinear form it determines, one may write it ex-
plicitly as an operator on | )e(s H(z) du(z) via the formula:

u) = / F@)E(0)E(s(@) A (2) dN (2), ae. g,

[ € C.(G), € € f)e? H(z) dp(zx). Furthermore, if G©) x 7 is isomorphic to the
constant bundle G x H, say by V: V(u,&) = (u,V¢), and if Ly : G — U(H)
is defined by the formula, Lo(z) = V(r(z))L(z)V (s(z)) ", then V, regarded as
a Hilbert space isomorphism from [ )? H(x) du(x) onto L2 (,u, H), gives rise to the
equation

(VL(f) / (@) Lo(2)€(s(2)) A~ ¥ (2) dA" (2),

f € C.(G), &€ € L?>(u,H). The point is that all the vectors come from and are
added up in the same space H.

EXAMPLE 3.27. Suppose the groupoid G is the transformation group groupoid
determined by the action of a locally compact group H on a locally compact space
X, as in Chapter 1, and identify G© with X. Suppose the Haar system is given
by the equation A\* = €, X Ay, as in Evample 2.43. Recall that v(x,t) = ©, and
that s(xz,t) = xt, from Example 2.2. Suppose we are given a representation of G,
(1, GO x H, L) and that G x H is isomorphic to the constant bundle G0 x Hy.
Then the map Lo : G (= X x H) — U(Ho) described above is a strict cocycle.
Recall from Exercise 8.16 that A is gwen by the formula Az, t) = J(x,t)d(t),
where § = d\g /d\5'. Recall, too, that J~ 3(z,t) = J2(at,t7). Consequently, the
representation L of C.(G), gotten through integration and expressed in terms of Lo
as above, is given by the formula

VL(f)V () = / £ 1) Lo, €(at) T* (at, =15 E (£) drr (t)

f €C(X x H), £ € L*(u, Ho). Except for the factor of 5~ 2, this is precisely the
integrated form of the representation described in Theorem 1.14. The presence of

6~z may be accounted for by our elimination of the modular function in formula
for the adjoint on C.(X x H).

EXAMPLE 3.28. In this example, G is an arbitrary locally compact groupoid
with Haar system {\*},cqo and p is an arbitrary (Radon) measure on G©). We
show how to write L := Ind p in integrated form using Theorem 3.6. (Recall Defi-
nition 2.45.)

The representation L acts on the Hilbert space L?>(v~") according to the formula

L) = (frEn) = / £ E)n() dv(y).

If one changes variables in the integral and expands the convolution, the integral
becomes

[ [ 1@ty i @i = [ [ f@ie) i @) anw),

where £(y) = §( —1). Apply Theorem 8.6 to write the s-decomposition of v as
v = [v,d[u](u), where [u] is the image under s of a probability measure on G
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equivalent to v. Thus, each v, is supported on G, (= s~ 1(u)). Then, as was noted
in Remark 3.18, [u] is quasi-invariant by Proposition 1.3.6 of [171]. Inserting this
decomposition into the last integral, we obtain

/ / / F(@)E(y) AN (@)iy) dvu(y) d[u] (w).

Since s(y) = r(x) = u in this integral, we may apply Fubini’s theorem and write it

/ / / F(@)é(y)i(y) dvu(y) dX"(x) d[u](u)
/f [/EW ) dve@)(y) | dlv](@),

where [V] = [ A“d[p](u). If v* is the image of v, under inversion, then the integral

in the brackets becomes
[ i e,

Since [u] is quasi-invariant, A := d[v]/d[v]™! may be chosen to be a Borel homo-
morphism by Theorem 3.15. So, if we let GO x X be the Hilbert bundle associated
with the disintegration of [v]~' with respect to r : G — G©) (see Exzample 3.8),
then H(u) = L*(v*) and we obtain a representation L of G on G©) xH through the
formula

N

(L(@)&(s(2))(y) = (a'y) A% (@),
y € G™®)_ With this notation, we conclude that

wnen = [ ][ o vimar e w)] die
=/( z)&(s(x)),n(r(x))) dvo(x),
where [V]o = A~ [v].

DEFINITION 3.29. Let p be a quasi-invariant measure on GO . The (left) reg-
ular representation of G is the representation (u, G© x L2(\), L) where

L(z) : L2 (X)) = L2(\7@)
is defined by the formula
(L(2)E(s(2)(y) = &z "y).

The integrated form of this representation is called the (left) regular representation

of C.(G) (also, of C*(G,)\)) on p.

EXERCISE 3.30. Let p be a quasi-invariant measure on G(9, let v be the induced
measure on G, and let L be the regular representation of C.(G) on pu. The map
W : L2(v) —» L2(v™Y) defined by the formula, W& = £ - A2 is a Hilbert space
isomorphism that implements a unitary equivalence between L and Ind p. (See [171,
I1.1.10].)

We require the following lemma. While the proof could be given here, it seems
preferable to prove it in a more general context later (See Chapter 5, Proposition
5.39).
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LEMMA 3.31. There is a self-adjoint approzimate identity {e,}°>, for C.(G)
in the inductive limit topology.*

We come now to the primary objective of this chapter,

THEOREM 3.32. [174, Proposition 4.2] Let H be a Hilbert space and let Hy be
a dense linear subspace. Suppose that L is a homomorphism from C.(G) into the
algebra of linear transformations on Hy satisfying the following three conditions:

(a) L is non-degenerate in the sense that the span of {L(f)¢]| f € C.(G), & €
Hy} is dense in H.

(b) For each &,m € Hy, the functional L¢ , : C.(G) — C, defined by the equa-
tion L¢ () = (&, L(f)n), is continuous with respect to the inductive limit
topology on C.(Q).

(c) For all f € C(G) and for all §,m € Ho, (&, L(f*)n) = (L(f)&;m)-

Then each L(f) is bounded and so extends uniquely to an operator, also denoted
by L(f), on all of H. The map f — L(f) is a representation of C.(G) on H and
there is a representation (fu, GO «H, U) such that L is unitarily equivalent to the
integrated form of (u, GO x H,U).

PROOF. The idea of the proof is to try to identify H with a completion of
C.(G)® Hy® and then to transfer the bundle structure implicit in C.(G) to C,(G)®
Hj by analyzing C.(G) ® Hy in terms of U C.(G")®Hy. The map from C.(G) x

ueG©O)
Hy to Hy defined by (f, &) to L(f)¢ is bilinear and has for its range the span® of
L(C.(G))Hy. We write Hoo for this span. Thus Hyo is a quotient of C.(G) ® Hyp.
We want to carry the inner product structure on Hyg back to C.(G) ® Hy. To this
end, define the sesquilinear form (-, -) on C.(G) ® Hy by the formula (f ® £, g®n) =
(&, L(f* = g)n). Then (-,-) is positive semi-definite:

Q_Fi®& D fi @)= (& LUT * [1)&) = D& LU L))

.3 i3

»J
= D (L), LUNE) = QL& D L(fi)és)
= ZL(fi)§i||2 20,

and is zero only when Y L(f;)§ = 0. Let N = {3, fi ® & | 3 L(fi)& = 0} be
the kernel of this seminorm and let K be the completion of C.(G) ® Ho/N in the
induced norm. The computations show that the map W from Hyg to K defined
by the formula W (3" L(f:)&) = Y. fi ® & + N is well defined, isometric, and has
range dense in K, of course. By hypothesis (a), W extends to a Hilbert space
isomorphism from all of H onto K. We shall henceforth identify H with K via W
and we shall identify Hoo with C.(G) ® Ho/N in K.

Hypothesis a) guarantees that Hgo is dense in H. It is crucial for our analysis
to know that, in fact, the span of L(C.(G))Hop is dense in H. To see this, first note
that hypothesis b) implies that the functionals L¢ , determine Radon measures on

4Note that a self-adjoint, one-sided approximate identity automatically is two-sided, since
taking adjoints is a homeomorphism in the inductive limit topology on C¢(G).

5Throughout the proof, the symbol ® will denote simply the algebraic tensor product.

6The term “span” will always mean linear span. No closures are implied or taken unless
explicitly stated.



44 3. REPRESENTATIONS OF GROUPOIDS

G. We shall identify L¢, with the Radon measure it determines and continue to
write L¢ (f) = (&, L(f)n), &,m € Ho, f € C.(G). This formula shows that L¢ ,(f)
is linear in ¢ and conjugate linear in 7 and f. Second, recall from Lemma 3.31
that C.(G) has a self-adjoint approximate identity in the inductive limit topology,
{en}22,. It follows that {L(e,)}32; converges strongly to the identity operator on
Hoo. More precisely, for L(f)n € Hoo, ||L(en)L(f)n — L(f)n|* =

Lyn(f* xenxen* f) — 2Re(Lyy(f* xen * f)) + Lyy(f* x f).

Since {e,}52, is a self-adjoint — and therefore, two-sided — approximate identity
for C.(G) in the inductive limit topology, e, * f — f, and f* xe, — f*. By
the joint continuity of multiplication, f* x e, *xe, x f — f* % f in the induc-
tive limit topology. Consequently, since L, , is a Radon measure, we see that
lim ||L(en)L(f)n — L(f)n|| = 0, proving that the span of L(C.(G))Hqo is dense in
Hy and, therefore, in H.

For h € Cy(G?), we define M (h) on H by first defining M (h) on C.(G)®@Hy /N
via the formula

(3.1) MM fi®&+N) =) ((hor)fi)®& +N,

N fi®w&+N e C.(G)® Ho/N. Then M(h) is well defined and bounded by the
Effros-Hahn trick [63, Page 41]: Write k(u) = (||h]|>, — |h(u)|*) 2. This is a bounded
continuous function on G, so (kor)f € C.(G) for all f € C.(G). We then have
IM(R)(E fi @ &+ N)|I* =

W | s o6+ = [ tonsies+a| < | fiee+n]

Thus M extends to a C*- representation of Co(G(®)) on H.

In the usual way (See [10].), we may apply reduction theory to produce a
measure y on G(© and a Hilbert bundle structure, G(®) +#, from H that diagonalizes
M. However, for our purposes, it is easier to construct the bundle explicitly, as we
hinted above, and to show that the general fibre H(u) may be taken to be C.(G*) ®
Hjy completed with a suitable inner product. After some additional preparation, we
shall show that p is quasi-invariant. We shall then construct the bundle G(©) x .
We shall show that G is represented by left translation on the bundle, and, finally,
that L is the integrated form of this representation of G.

We extend M to a C™*-representation of the C'*-algebra of all the bounded Borel
functions on G(® (with the sup-norm) in the standard fashion, keeping the same
name M (see [10, p.50 ff]). It is worthwhile to emphasize that the extended M
is not given by formula (3.1) as it stands. Indeed, that equation does not make
sense for functions f that are not continuous. We will get around this shortly. The
extension annihilates all functions that are null with respect to u. Thus, really, M
may be viewed as a representation of L (u). We also want to extend L to (certain)
Borel functions on G, representing them on a dense subspace of H. This is more
subtle.

First, we write B.(G) for the space of bounded functions f on G, such that
the support of f is compact and such that there is a uniformly bounded sequence
in C.(@) that is eventually supported in some compact set containing the support
of f and that converges to f pointwise through out G. A moment’s reflection
reveals that B.(G) is precisely the compactly supported functions in the so-called
first Baire class [78]. The formulas defining the algebra operations on C.(G) make



3. RENAULT’S DISINTEGRATION THEOREM 45

sense on B.(G), giving it the structure of a x-algebra. This is not a topological
algebra in the usual sense, but there is some structure available that we shall use.
First, we shall say that a sequence {f,} in C.(G) converges to f in B.(G) in case
{fn} is uniformly bounded, the f,, are supported in a common compact set in G,
and f, — f pointwise on G. Note that if {f,} converges to f in B.(G), then by
Lebesgue’s bounded convergence theorem, [ f,dm — [ fdm for every (Radon)
measure m on (. Since the members of a Haar system are Radon measures, we
may assert that if {f,} and {g,} converge in B.(G) to f and g, respectively, then
{fn * gn} converges to f x g in B.(G). (It is worth mentioning here that B.(G) is
not closed under this kind of convergence: that is, if {f,} is a sequence in B.(G)
that converges pointwise to a function f in such a way that the supports of the
fn are all contained in some prescribed set, then f need not be in B.(G). In fact,
such an f is in Baire class 2. One can iterate this process transfinitely to pick up
all compactly supported bounded Borel functions, but we do not know need to go
beyond B.(G).) Our objective is to extend L to B.(G).

Since the functionals L¢ , are identified with Radon measures, we may evaluate
them on B.(G). We shall show, eventually, that the measures L¢ ,,, with &, € Hoo,
are all absolutely continuous with respect to v = o A, but for now we will proceed
without this fact”. Form the algebraic tensor product B.(G)® Hy and define (-, -) on
this space by the same formula we used before: (3 f;®&;, > g;®n;) := 3 Le, n, (fi*
9;)- This form is positive semi-definite when the functions are in C,(G) by what
was just proved. To prove that it is positive semi-definite on B.(G)® Hy, consider a
vector Y f;®¢&; in B.(G)® Hy and choose a probability measure w on G with respect
to which all the measures Lg, ¢, are absolutely continuous. Also, for each i choose
a sequence {f; n}52; C C.(G) that converges in B.(G) to f;. Then, by Lebesgue’s
bounded convergence theorem, we see that (}_ fi®&;, > fi®&) := > L, ¢; (fi* f;)
=1m Y L, ¢; (fip * fin) = Um(Y fin ® &, 3 fin ®&) > 0. Let Ny be the kernel
of the inner product on B.(G) ® Hy and observe that if 3 f; ® & € C.(G) ® Hoy C
B.(G) ® Hy, then >_ f; ® & € N if and only if Y f; ® & € Np. Thus the mapping
N fi®&+N = fi®& + N, is isometric and extends to isometry mapping H
to the completion of B.(G) ® Hy/Np, which we shall denote momentarily by Hj.
To see that the image of H in Hy is all of Hy, it suffices to show that every vector
of the form g ® £ + N, with g € B.(G) and & € Hy, lies in the image of H. But if
{gn} is a sequence in C.(G), converging to g in B.(G), then by Lebesgue’s bounded
convergence theorem again,

lgn @ €+ Ny — g ®E+ N|* =
lgn ® & + Nol* — 2Re(gn ® € + Ny, g ® €+ Np) + Ilg @ € + N3 |”
= L e(97 * 9n) — 2Re L ¢ (g7, * 9) + Lee(g9* g) = 0.
Thus we may view B.(G)® Ho /N as contained in H so that the following inclusions
hold: Hyy = C.(G) ® Ho/N C B.(G) ® Ho/Ny C H. However, while Hyg is

contained in both B.(G)® Ho/N;, and Hy, a priori there is no containment relation
between B.(G) ® Hyo/Ny and Hy. This is one of the reasons why Hgg is introduced.

"It will be important for our arguments that ¢ and 1 come from Hgpy. We cannot prove
straight away that L¢ , << v if either £ or 7 is assumed only to lie in Hg. Of course, when the
theorem is proved, L¢ , will make sense for all £ and 7 in H, and L¢,,;, << v. However, it seems
to be necessary to work in an incremental fashion.
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On Hyg, L(f), f € C.(@), is given by the formula,

LHOQ a®&+N) =) (fxg)®&+N,

reflecting the homomorphic character of L and the fact that N = {3, fi ® & |
>TL(fi)& = 0}. Observe that hypothesis (c) of the theorem implies that L(f*)
is contained in the Hilbert space adjoint of L(f), L(f)*. Thus L(f)* is densely
defined, and so L(f) is closable. (See [169, Theorem VIIL1].) We write L(f) for
the closure of L(f). Since the graph of the closure of an operator is the closure of its
graph, one checks easily that B.(G) ® Ho/N} is contained in Dom(L(f)) and that
L) gi®@&+Ny) =22 (fx9:) @&+ Ny for all 37 g; @&+ Ny € Bo(G) ® Ho /Ny
(Indeed, if ||| denotes the graph norm of L(f), then given g ® { + Ny, g € C.(G),
we have |lg® £+ NG||L = llg @ E+NG|I" + [I(f % 9) ®E+NlI” = Lee(g™ * 9) +
Leg(g* = f** fxg). Since every function g in B.(G) is the limit of a sequence from
C.(G) converging to g in B.(G), we conclude that B.(G) ® Hy/N; C Dom(L(f))
and the desired formula holds by Lebesgue’s bounded convergence theorem.)
Now for f € B.(G), define Ly(f) on B.(G) ® Hy + N} by the formula

L(Q @&+ No) =) [+ @&+ N,

Y9 ® & + Ny € Bo(G) ® Hy/Ny. We must check that Ly(f) is well defined. If
S>gi®&+ Ny =0, but Yo f xg; & + Ny # 0, then on the one hand 0 =
LW gi®&+Ny) =>h*xg; Q& + N, for all h € C.(G), while on the other

D Leg; (g7 + f** fxg5) > 0.

However, this expression may be approximated by expressions of the form

> Le,g; (g5 * h* x hx g;)
where h € C.(G); and these are all zero since each may be rewritten as

N 2
L) (> g:®¢&; +Nb)H . This contradiction proves that Ly(f), f € B.(G), is
well defined.

With the definition of Ly(f), f € B.(G), in hand, it is straightforward to prove
that the map f — Lp(f) is an algebraic homomorphism of B.(G) into the (not-
necessarily-bounded) linear transformations on B.(G) ® Ho/N;, with the property
that Ly(f*) C Ly(f)*, f € B.(G). Furthermore, for f € C.(G), Ly(f) = L(f) on
BC(G) ® Ho/Nb.

To lighten the notation, we shall henceforth drop the coset notation for elements
in C.(G)®Hy /N (= Hyo) and B.(G)®Hq/Np; that is, if gR€+Ny € B.(G)QHo /N,
for example, we shall simply write g ® £. The following lemma highlights the key
technical calculations we shall need in the sequel. The reason it is necessary and
the thing to keep in mind when using it is that on the one hand, the measures
Lg¢,, are defined in terms of the representation L, its values on functions in C.(G),
and the inner product on H; but on the other hand, L, and the inner product
on elements in B.(G) ® Ho/Nj, are defined in terms of the measures Lg . It is
therefore necessary to make clear the precise roles various constructs are playing.

LEMMA 3.33. Suppose f € B.(G) and that k is a bounded Borel function on
G©) that is the pointwise limit of a bounded sequence in Co(G®), i.e., suppose that
k is a bounded, Baire class one, function on GO . Then for all g ® & and h® 1 in
Hyg, the following equations hold:
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1) (@& Ly(flhon) ={(g®&, fxh@n) = Le y(g* * f % h) = Lyge nen(f)-
2) (9@ & M(k)h®n) = Le y(g* % (kor)h) = (g®&, (kor)h ®@1n)

= (L(g)§, M (k) L(h)n).
3) (9@ & M(k)Ly(fihen) =(g®& Ly((kor)f)h®@n).

ProOF. For 1), observe that the first equation holds simply by definition of
Ly(f). The second holds by definition of the inner product on B.(G) ® Ho/Np. The
third holds when f € C.(G) by definition of the two measures, L¢ ;, and Lyg¢ hen,
and hypothesis c) in the statement of Theorem 3.32. But also, the third equation
holds for any f that is the limit of a sequence from C.(G) that converges to f in
B.(G) by Lebesgue’s bounded convergence theorem. The argument for 2) is similar:
The first equation holds for all k € Co(G(?) by definition of M (k) and the measure
Le . If {ky} is a bounded sequence in Co(G?)) converging pointwise to k, then
M (k,,) = M (k) weakly by Lebesgue’s bounded convergence theorem. On the other
hand, g* * (k, or)h — g* x (kor)h in B.(G). Consequently L¢ ,(g* * (k, or)h) —
L¢ (9" *(kor)h) by Lebesgue’s bounded convergence theorem again. Therefore the
first equation holds. But the second holds for k € Co(G(?)) by definition of measure
L¢ ,, and in the limit, it holds by definition of the inner product on B.(G) ® Ho/Nj.
The third equation holds by virtue of the identification of elements in Hgyg such as
g ® & with vectors of the form L(g)¢. Finally, for 3), observe that 2) implies
that M(k)p @ n = (kor)p ®@n for all ¢ ® 1 in B.(G) ® Hy/N,, since M (k) is
bounded and ¢ is the limit in B.(G) of a sequence from C.(G). Also, it is clear
that M(k)*o®n = (kor)p®mn, for all p ® n € B.(G) ® Hy/Ny. Now calculate:

(9 @& M(k)Ly(f)(h @ n)) ((kor)g®&, (f xh)@m)
(9@ & (kor)(f xh)®mn)
(9 (kor)f) xhom)
= (g®& Ly((kor)f)(h®mn)).
The first equality results from the formulas for M (k) and its adjoint just noted
and from the definition of L(f). The second, again, is a result of the formulas for
M (k). The third is the easy calculation, (ko r)(f * h) = ((kor)f) * h, which is

valid for all functions f,h € B.(G) and all bounded Baire class one functions &k on
G The last equality is by definition of L. O

We now prove that the measures L¢ ,, £, € Hoo, are all absolutely continuous
with respect to v = p o A. Indeed, suppose f is the characteristic function of a
Borel set that is null for v. By the regularity of v, we may assume without loss of
generality that the null set is a G5. That is, we may assume that f lies in B.(G).

From the equation
0= [rav=[ [ @ ax@ .

we infer that there is a p-null set N in G(© such that f(z) = 0, a.e. A% for all
u ¢ N. Again, by regularity — of y this time — N is contained in a null Gy, and so
we may assume without loss of generality that IV itself is a null G5. In particular,
we may assume that 1y is the bounded, pointwise limit of a sequence of functions
from Co(G(?). Since f(z) = 0 a.e. \* for all u ¢ N, we conclude that for each
h € B.(G),

(3.2) f*h(z) =1n(r(x))f * h(z)
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for all z € G without exception. Suppose that we are given vectors in Hgg. We may
assume, without loss of generality, that they are of the form g ® £ and h ® , with
g,h € C.(G), and &, € Hy. Since f and 1y satisfy the hypotheses of Lemma 3.33,
we may appeal to assertion 1) in it to write Lyge nan(f) = (9 ® &, f *h®n). By
equation (3.2), this may be written as (¢ ® &, ((1x or)f) * h ® ). By assertions 1)
and 3) of Lemma 3.33, this, in turn, may be written as (g ® &, M (1n)Ls(f)h ® n).
However, since N is a null set for g, M(1x) = 0. Thus all the expressions are zero;
in particular, Lyge¢ hon(f) = 0, as we wanted to prove. Thus Lyg¢ heon << V.

We now show that p is quasi-invariant, i.e., that v is equivalent to v~L. Let
h be the characteristic function of a null set. We shall show that h = 0 a.e. v,
where h(x) = h(z~!). To this end, we may assume, by the regularity of v that the
null set is, in fact, a G5, so that h € B.(G). For every k € C.(G), the function
|k|” b (pointwise product) is a function in B.(G) that vanishes a.e. v. So if we set
A(khk) = [ |k hd\*, then A(khk) is a bounded, Baire class one function on G(©)
by the monotone convergence theorem, and A(khk) = 0, a.e. p. Applying part 2)
of Lemma 3.33, we may write

(3-3) Lee(g" * (A(khk) o 1)g) = (L(9)€, M(A(khk))L(g)§) = 0
for all g € C.(G) and £ € Hgyo. The converse also holds, i.e., if this equation yields
zero for all g, £, and k, then h = 0, a.e. v. Indeed, if the equation yields zero
for all g € C.(G) and £ € Hgo, then the operator M (\(khk)) = 0, since as we
showed when we introduced Hoo, the span of LLCC(G))HOO is dense in H. But if
M(X(khk)) = 0, then M\(khk) = 0 a.e. u, and so khk = 0 a.e. v. If this happens for
every k € C.(G), we conclude that h = 0 a.e. v. Thus, it suffices to show
(3.4) Leg(g* * (A\(khE) 0 1)g) = 0
for all g, k € C,(G), and € € Hyg. A calculation shows that

g* * (A\(khk) 0 1)g = f* %xux (Af)
where f and hf are defined on G %, G := {(z,y) € G x G| r(z) = r(y)} by the
formulas f(z,y) = k(y 'x)g(y) and hf(z,y) = h(z'y)f(z,y), and where

£ #an fal2) = / / T (2, 29) fol,y) AN (2) NG (3),

for fi and fs in B.(G *, G). Note that our particular f lies in C.(G *, G) and
linear combinations of functions of the same form as f, obtained by letting g and
k range over C.(G), are dense in C.(G %, G) by the Stone-Weierstrass theorem.
Hence for every f € C.(G %, G), f* *x«x (hf) is a compactly supported bounded
Borel function on G so that

(3.5) Lee(f* #xex (Rf)) =0
for all £ € Hyg, by equation (3.3). Now observe that A x A is invariant under the
flip (z,y) — (y, ). Consequently,

F*xn (Bf) = F* xxen (B)
for all f € C.(G x G), where f(z,y) = f(y,z) and, recall, h(z) = h(z™"). Thus
equation (3.5) implies that L¢ ¢ (f* x«x (hf)) = 0 for all f € C.(G*G) and £ € H,.
This, in turn, yields equation (3.4) and completes the proof that yu is quasi-invariant.

Set vy = A~ 2v, where, recall, v = go XA and A = dv/dv—". Recall, too, that
by Theorem 3.15, A may be chosen to be a homomorphism from G into R} . Also,
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for ¢ and i in Hgo, let p¢ , be the Radon-Nikodym derivative of L, , with respect
to vg. Then we may write

& L(f)n) = / £(2)pen (@) do
for all f € C.(G). For each u € G we define (-, -),, on C.(G) ® Hyo by the formula
(fe&gon), = / / T@)g(y)pen(z ty) A2 (2) A2 (y) dA" () A" ().

Observe, first, that the value of (f ® £, g ® 1), only depends on the values of f
and g restricted to G*. Then observe that Fubini’s theorem implies that for all
h e C.(G®) and all f, g € C.(G)

(3.6) /h(u)(f ® & 9 ®@n)udp(u) = (M(R)L(f)E, L(g)n)
for all £, n € Hogo, and that for all f,g € C.(G) and for all £, n € Hgg,

for v-almost all z € G, where (z - f) denotes any function in C.(G) such that
(- f)y) = flz™'y), y € G"®). (Such functions exist by the Tietze extension
theorem.) It should be emphasized that the exceptional v-null set in (3.7) depends
upon f, g,&, and n. We will handle such null sets by focusing on a suitable countable
collection of functions.

To this end, choose an orthonormal basis {¢;} for Hyo and a sequence {y;}
in C.(G) that is dense in the inductive limit topology. By equation (3.6) there
is a p-conull set F C G(® such that for u € F, (-,-), is a positive semi-definite
sesquilinear form on the vector space (over Q++/—1Q) generated by {p; ® £;}. By
continuity of the integral, positivity is preserved on the C-vector space generated
by {f ® &| f € Ce(G)}. For u € F, let H(u) be the Hausdorff completion of this
vector space with respect to (-,-)y, and write f ®, £ for the image of f ® £ in
H(u). If we define sections ®;; : FF — F = H by the formula @ij (w) = @; Qu &,
then by Proposition 3.2, F x H becomes a Hilbert bundle over F' with {®;;} as a
fundamental sequence. Sweeping all the exceptional v-null sets associated with the
sequences {p;} and {¢;} in equation (3.7) into one grand null set and taking its
complement V', we may conclude from equation (3.7) that for all z € V N (G|F),
the formula

(3.8) U@)(f @s(a) &) = A2 (2)(z - f (2 )

defines an isometry from H(s(z)) onto H(r(x)). Observe that the set of z € G|p
such that (the right hand side of) equation (3.8) defines an isometry from H(s(z))
onto H(r(z)) is closed under multiplication. Since this set contains the v-conull set
V N (G|F), Lemma 3.21 implies that there is a p-conull set F' such that G|p C
V N (G|F). Replacing F by F', if necessary, we obtain a homomorphism

U:G|r — Iso(F xH).
This map is clearly Borel by virtue of the equation (f ®, ()¢, U(z)(g ®s(z) Mr(z) =

/ / F 1) 9@ Ty2)pe.n(yr ty2) A7 (y1) AT (y2) A% (2) dA™(® (1) dA™@ (312).

Since G|r is conull in G with respect to the measure v, we may apply Theorem 3.20
to conclude that there is a Borel homomorphism of G into Iso(G(®) % H), which we



50 3. REPRESENTATIONS OF GROUPOIDS

shall continue to denote by U, that satisfies equation (3.8) on a v-conull subset of
G.

If the ®;; are viewed as elements in the direct integral, fga(o) H(u) du(u) and if
we write V(L(goz)gj) = ‘I)ij; then

V(L&) V(L(pn)&)) = / (1 @ £, 0k D &1)u dpi(u)

= (L(pi)&j, L(pr)&)

and so V' extends to a Hilbert space isomorphism from H onto fga(o) H(uw) dup(u).
(Note that V' extends to all of H since {{;} is an orthonormal basis for Hoyo and
{¢:} is a dense subset of C.(G).) It is then a straightforward computation to check
that (on a dense subset of fé?(o) H(u)du(uw)) VL(f)V—L = L'(f), f € C.(G), where
L' is the integrated form of U. More precisely, we see that for vectors of the form
L(yp;)&; we have

(L(H)L(pi)&j, L{wr) &) = (VL(f) L(w:)&;, V L(pr)&1)
= (L' (f)V L(©:)&;, V L(pr)&) = /f(x)([j(x)(%@s(w)ﬁj),(90k®r(w)§l))r(w) dvo ().

This completes the proof. O

Theorem 2.42 is now an immediate corollary of Theorem 3.32 and Proposi-
tion 3.25. It is worthwhile to emphasize that we usually apply Theorem 3.32 to
C*-representations of C*(G,A). This is certainly permissible. For if a represen-
tation m of C*(G,)\) is given, then its restriction to C.(G) clearly satisfies the
hypotheses of Theorem 3.32. Therefore, we may disintegrate 7 in terms of a
uniquely determined representation of G, (i, G(® x#, L), and write w(f)&(u) =
J 1@)(U(@)&(s(2))) A2 (x) dX*(x), for all € € [0 H(u) du(w).

It may seem that the hypotheses of Theorem 3.32 are a little contrived. For
example, one may wonder why worry about representations of C.(G) that act on
a linear submanifold of a Hilbert space. It turns out that this provides a degree
of freedom in arguments that is very useful. Indeed, as we shall see in Chapter 5
when we discuss Morita equivalence for groupoids the formulation of Theorem 3.32
that we gave will be crucial. See the proof of Theorem 5.38 in particular.

The following corollary should be compared with Proposition 2.47.

COROLLARY 3.34. If G = X x X is the trivial groupoid determined by a second
countable, locally compact, Hausdorff space, X, and if the Haar system {\"},cq©
is given by the formula A* = €, X X\ where \ is a Radon measure on X with
supp(A) = X, then C*(G, \) is an elementary C*-algebra.

PROOF. Let 7 be a representation of C*(G, )), and let (u, G(® x H, L) be its
disintegration. We know from Exercise 3.17 that p and A are mutually absolutely
continuous. We may therefore replace p by A in all that follows. When this is
done, we see that v = X\ x A is obviously invariant, i.e., A = 1. The bundle
G x H is isomorphic to a constant bundle G(®) x H. Indeed, observe that in the
representation of any groupoid, the sets where dim(#(u)) is constant are invariant.
Since there is only one, nonempty, invariant set in this example, namely X, the
assertion follows from Proposition 3.11. By the remarks after Definition 3.26, we
may write the Hilbert space of m as L?(\, H) and for £ in it, and f € C.(G), we
may write ((f)§)(z) = [ f(z,y)(Lo(z,)€)(y) dA(y), where Lo : G — U(H), is the
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Borel homomorphism determined by L. However, we may apply Proposition 3.19
to conclude that there is a Borel function B : X — U(H) such that Lo(z,y) =
B(x)B(y)~!, forallz, y € X. If we define W : L?(\, H) — L?(\, H) by the formula
(W¢)(z) = B(x)~'¢(x), then

(Wr(H)W€)(x) = / F(@,p)Ey) dA(y).

Thus =, restricted to C.(G), is unitarily equivalent to a multiple of the canonical
representation of C.(G) on L?(\). This shows that C*(G, \) is isomorphic to the
algebra of compact operators on L2()). O
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CHAPTER 4

Measured Groupoids

In this chapter, we concentrate on some of the measure theoretic aspects of
groupoids. Our primary objective is to give complete proofs of Theorem 3.20 and
Lemma 3.21. These played key roles in the proof of Renault’s disintegration the-
orem, Theorem 3.32. This we do in the next two sections. The remainder of the
chapter surveys some of the theory of measured groupoids. In the third section,
we present a brief discussion of Peter Hahn’s work on Haar measure for measured
groupoids and the von Neumann algebra of a measured groupoid. Section 4 is de-
voted to the theory of transversals for measured groupoids. Section 5 is concerned
with the mapping properties of measured groupoids.

1. Preliminaries

In this chapter, we rescind our blanket assumption that all groupoids are locally
compact, Hausdorff, and second countable. We will invoke it as needed. Instead,
throughout this chapter, unless otherwise asserted, G will denote an analytic Borel
groupoid. Recall from Definition 2.25 that this means that G has a Borel structure,
which we are assuming is analytic, that G(*) is a Borel subset of G x G, and that
the groupoid operations are Borel maps. Recall, also, that a measure class C on a
Borel space X is a family of (o-finite) measures on X that are mutually absolutely
continuous. We assume that measure classes are complete in the sense that if the
class contains one measure, u say, then it contains every other measure that is
mutually absolutely continuous with respect to u. Sometimes it is useful to single
out a measure u, say, and the measure class it determines. In such events, we
write [u] for the class p determines.! In Chapter 1, we discussed invariant measure
classes on spaces on which groups act. Here, we need to generalize this notion to
groupoids.

DEFINITION 4.1. Let G be an analytic Borel groupoid and let C be a measure
class on G.

1. The class C is called symmetric if and only if v is mutually absolutely
continuous with v—1, where, recall, v=! is the image of v under inversion
(x—z7t).

2. Letv € C be a probability measure and letv = [ v* du(u) be its r-decomposit-
ion (See Definition 3.7.) Suppose there is a p-conull set U C G© so that

1 This notation conflicts with our earlier use of [u] to denote the saturation of a measure p.
However, since we will not be considering measure classes and saturations simultaneously, the
dual use of [u] should not cause confusion.
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forz € Gly, - (@) ~ p7(@) 2 Then v is said to have a quasi-invariant r-
decomposition and {v"},cqo) is called the quasi-invariant family associated
with v.

3. If C is symmetric and contains a probability measure with quasi-invariant
r-decomposition, then C is called invariant.

4. If C is invariant, the pair (G, C) is called a measured groupoid.

REMARK 4.2. In some places in the literature, a probability measure on G with
a quasi-invariant r-decomposition is called quasi-invariant. However, here, we have
reserved the term ‘quasi-invariant’ to refer to measures on the unit space satisfying
the condition of Definition 3.14.

It is easy to see that if C' is a symmetric measure class, then C' contains prob-
ability measures v that are symmetric in the sense that v = v=!: If 1y € C, then
sois v := %(Vo + vy 1), and v is symmetric. It is also easy to see, using Theorem
3.6, that if C' is an invariant measure class, then every probability measure in C'
has a quasi-invariant r-decomposition as well as a quasi-invariant s-decomposition
(which is defined in the obvious way).

Examples of measured groupoids are easy to come by: Simply let G be a locally
compact groupoid with a Haar system {A\“},cq, select a quasi-invariant measure
p on G (such measures exist by Remark 3.18) and let C' be the measure class
determined by [ A“dpu(u). The question immediately arises: Is this the only way
to get measured groupoids? That is, if (G, C) is a measured groupoid, must G have
a locally compact topology and must C come from a Haar system? We shall have
more to say about this a little later.

A special role is played by the trivial groupoid G = [0,1]? and the invariant
measure class C' determined by area measure. We call this the trivial uncountable
measured groupoid.

Suppose that (G, C) is a measured groupoid and that v is a probability measure
in C. Then we can form the probability measure r() on G(©) and the measure class
that r(v) determines. This measure class is easily seen to be independent of the
choice of v € C, and so we denote it 7(C).

DEFINITION 4.3. A measured groupoid (G,C) is called an ergodic measured
groupoid or a virtual group in case the measure class r(C)is ergodic in the sense
that every invariant Borel subset of G is either null or conull for r(C).

This definition of “virtual group” is Ramsay’s [157, p. 274]. Mackey defines
a virtual group to be a similarity class of ergodic measured groupoids. See [120,
121, 123] and the discussion below.

One proves without too much difficulty that if G is a transformation group
groupoid X x H determined by a locally compact group H acting on a locally
compact space X and if C is the measure class determined by the measure y x A,
where A is Haar measure on H and p is a quasi-invariant measure on X, then C' is
invariant and (G, C) is ergodic if and only if y is ergodic in the usual sense. See
[157, Theorem 4.3] for details.

It is useful to note that there is a slightly different way of expressing ergod-
icity that is a bit easier to deal with in practice. Suppose (G,C) is a measured

2Recall that - v5(*) denotes the image of »*(*) under the transformation that = implements
from G5(®) to G"(®). Thus [ f(y) d(z - v*@®)(y) := [ f(zy) dv*@)(y).
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groupoid and let A C G© be a Borel subset. Then A is called almost invariant
iff s71(A)Ar—1(A) is a null set for C. (Here, A denotes symmetric difference.) In
[157, Theorem 4.2], Ramsay proves that C is ergodic iff every almost invariant set
is null or conull for 7(C). In turn, this happens iff each Borel function f on G(©
such that for = f o s a.e.C, necessarily is constant a.e.r(C). In the case of a
transformation group X x H, just discussed, a subset A C X is almost invariant
iff for each t € H, At = A a.e.u. Thus, in this case, it is easy to see that almost
invariant sets differ from invariant sets by null sets.

As we indicated in Chapter 1, Mackey realized that virtual groups are a natural
generalization of transitive group actions. A bit more precisely, if H is a subgroup
of a group G one can express properties of H in terms of the transformation group
G x G/H. For example, one can express a homomorphism from one group Hj,
contained, say, in G, to Hs contained in G5 in terms of a groupoid homomorphism
from G1 x G1/H;y to G2 x G2 /Hs. If Hy and H, are subgroups of the same group
G, then it is possible to express whether or not H; and Hs are conjugate in terms
of the similarity of the groupoids G x G/H; and G x G/H». Once the transition
from H to G x G/H is made, it is natural pass from G x G/H to general ergodic
groupoid and a homomorphism of it into G, i.e. to a virtual subgroup of G. One is
faced with a number of problems relating to the nature of homomorphisms between
measured groupoids in carrying out this transition smoothly. These were taken up
by Ramsay [157] in a systematic way and we turn to part of his analysis now.

2. Homomorphisms of measured groupoids. I

When working with a measured groupoid, it is often necessary to pare it down
slightly to a smaller groupoid called an inessential contraction or inessential re-
duction. We have met this term before in connection with representations. We
repeat the definition here to capture a point that will be useful to our discussion.
Suppose (G,C) is a measured groupoid and U C GO is a subset of G(® that
is conull with respect to r(C). Then because C is an invariant measure class,
Glu =r Y (U)n s 1(U) is a conull subset of G. If one denotes the restriction of
the measures in C to G|y by C|u, then (G|u,C|u) is a measured groupoid that is
called the inessential contraction of G to U.

If (G,C) is a measured groupoid, and if v € C is a symmetric, v = v~!, then
r(v) = s(v) and if we denote the common value by p, we will write v = [ v* du(u)
for the r-decomposition of v and v = [ v, du(u) for the s-decomposition of v. We
then have: For u in a p-conull subset of G0, v*(E) = v,(E~") for every Borel
set E in G. That is, the exceptional null set of u is independent of E. We may
assume, then, in the r- and s- decompositions of v, that v*(E) = v,(E~!) for all
u € G and all Borel sets E without exception. The measure families, {v} e
and {v*},cqo, give rise to a measure on G, denoted v(?), and defined by the
formula v® = [y, x v*du(u). The measure class on G determined by v is
denoted C(?).

EXAMPLE 4.4. The following discussion may be useful to illustrate some of the
ideas we have been discussing. It will play a role in the next section. Suppose that
(G,C) is a measured groupoid. Recall from Remarks 2.14 that G is a groupoid in
its own Tight; it is the action groupoid determined by G acting on G on the right.
The fact that G is analytic (standard) implies that G®) is also analytic (standard).

Rewrite this. Per-
haps put in some of
Mackey’s analysis.
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This is not difficult to show [87, Lemma 3.3]. It is only a little harder to show that
C?) is an invariant measure class on G . See [87, Proposition 3.4] for details.

REMARK 4.5. The measured groupoid (G(Z), C(z)) is ergodic if and only if C is
concentrated on an orbit. To see this, first observe that r?)(v(®) = v and that the
r(®) _decomposition of v is v = [§, x v*®) dv(z), i.e.,

[1@pa = [ [ [ 1@y)ar@ ) i@ du).

Second, observe that if ¢ is any Borel function on GO, then setting g(x, s(x)) =
por(z) defines a Borel function g on (GP)© that is invariant: gor? = gos®),
Now, if C?) is ergodic, then every such invariant function g must be a.e.constant
with respect to r® (v?) = v. This happens iff ¢ is constant a.e.u. But if every
Borel function on G is constant a.e.u, p must be a point mass. Conversely, if
W is a point mass, then it follows from the r®-decomposition of v, that v is
concentrated on the transitive groupoid G(2)|Gu and so is ergodic.

The following terminology is adopted from [161]. It differs slightly from earlier
terminology in [157] and elsewhere in the literature.

DEFINITION 4.6. Let G and H be analytic Borel groupoids and let ¢ : G - H
be a Borel map.

1. ¢ is called a homomorphism or a Borel homomorphism if algebraically ¢ is
a homomorphism in the sense of Definition 2.4.

2. If C is an invariant measure class on G, so that (G,C) is a measured
groupoid, then ¢ is called a weak homomorphism (with respect to C) in
case there is an inessential contraction of G, G|y, so that the restriction of
¢ to G|y is a homomorphism in the sense just defined.

3. IfC is an invariant measure class on G, the @ is called an a.e.homomorphism
(with respect to C) if the set {(x,y) € G? | p(z)o(y) = p(zy)} is conull
with respect to C?),

It may be helpful to note that weak homomorphisms sometimes receive casual
treatment. If ¢ is a homomorphism of an inessential contraction G|y of G, then one
can treat ¢ as a weak homomorphism on G simply by defining ¢ to be an arbitrary
constant value on the complement of G|y. Also, of course, a weak homomorphism
may have many inessential reductions on which it is a homomorphism. These sorts
of ambiguities should cause no difficulties in our discussion.

REMARK 4.7. With Definition 4.6 in hand, it is worthwhile to continue Remark
4.4 and to note that G® is cohomologically trivial in the sense that if o : G® — H
is a (algebraic) homomorphism, then there is a function b : G — H such that
o(z,y) = b(r® (z,y)b(s? (z,y))~" for all (z,y) € G?. The function b may be
chosen to be Borel if and only if o is Borel. Indeed, simply set b(z) = o(z,z7 1)
and recall that r® (z,y) = (x,s(x)) which we identify with x, while s (z,y) =
(zy,s(zy)) = (zy,s(y)) which we identify with xy. A straightforward calculation
shows that o(z,y) = b(r®(z,y))b(sP@ (z,y))".

The proofs of the following two results are taken directly from Ramsay’s article
[157]. He attributes a key element of the proof of the following theorem to Lemma
6.2 of [118]. Note that in [157], the hypotheses include the assumption that the
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invariant measure classes in question are ergodic. However, the proofs don’t use
ergodicity.

THEOREM 4.8. [157, Theorem 5.2] Let (G, C) be a measured groupoid and sup-
pose v : G = H is an a.e.homomorphism, where H is an analytic Borel groupoid.
Then there is a weak homomorphism @ : G — H such that oo = ¢ a.e. C.

This result rests on the following lemma which, when specialized to a measured
groupoid coming from a locally compact groupoid with a Haar system and a quasi-
invariant measure, is Lemma 3.21. It is an analogue of the well known fact that a
conull subsemigroup of a locally compact group is the entire group.

LEMMA 4.9. [157, Lemma 5.2] Let (G,C) be a measured groupoid, let ¥ be a
subset of G that is closed under multiplication and assume that . contains a conull
set for C. Then there is a set U C G© such that G|u is contained in ¥ and U is
conull with respect to r(C).

PROOF. Set £; = XNX~! ={z € G|z,z7! € £}. Then ¥; is a groupoid con-
tained in G' (whose unit space may be smaller than G(?)) and contains a conull Borel
subset B of G. Let v be a probability measure in C' and write its s-decomposition
as v = [vudp(u). Then p is a probability measure on G and p-almost every v,
is a probability measure on G. (The support of v, is contained in G, recall.) The
invariance assumption on C' means that v,(,) - & ~ v,(,) for v-almost all z. Since B
is conull with respect to C' and therefore with respect to v, we may find a p-conull
set U C G such that for all u € U, v,(G) = vu(B) = v,(G, N B) =1, and such
that for all z satisfying r(z), s(z) € U (i.e., for all z € G|v), vr(y) - ¢ and vy,
are equivalent. We want to show that G|y is contained in ¥;. Let z € G|y and
write u = s(z) and v = r7(z). So v and v lie in U. By assumption on U, we have
vy,(Gy,NB) =1, so G, N B is conull with respect to v,, and v, - & ~ v,. Therefore,
(G, N B)x is conull with respect to v,. On the other hand, since u € U, G, N B
is also conull with respect to v,. Consequently, (G, N B)zN G, N B is conull with
respect to v,. In particular, this set is not empty. Thus, there are y and z in
B C % such that y = z2. Therefore z = z7 'y € ¥1. O

PROOF OF THEOREM 4.8.

Fix a symmetric probability measure v in C' and write its r-decomposition as
v = [v*du(u). Since v is symmetric, it has s-decomposition v = [ v, du(u) with
v*(E) = vy (E~") for every Borel set E in G. The measure class C*) is determined
by v = J vy x v*dp(u). By hypothesis, there is a p-conull set U; C G© such
that for u € Uy, p(z)p(y) is defined and equal to p(zy) for v, X v¥-almost all
pairs (z,y) in G, X G*. As in the proof of the preceding lemma, we may assume
without loss of generality that v, (Gy) = 1 for all u € Uy and that v,(,) - & ~ vy
for all z € Gy := G|y, Since H is assumed to be analytic, H is Borel isomorphic
to an analytic subset of the unit interval [0,1]. We shall think of H as sitting in
this interval via such an isomorphism. Also, fix an element h € H arbitrarily. We
define a function f: G x G — H by the formula:

[ e(x)7rp(zy), if the product is defined,
fz,y) = { h, otherwise.

Since the set of (z,y) for which ¢(z)~1¢(zy) is defined is a Borel set and ¢ is Borel,
f is a Borel function, which we think of as having values in the unit interval. Define
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@1 : G — [0,1] by the formula ¢ (y) = [ f(x,y) dvy(y)(z). Then ¢ is a Borel func-
tion of y. (Indeed, the set of non-negative functions g such that [ g(z,y) dv,(y)(z)
is Borel function is a cone that is closed under monotone limits and contains all
product functions, g(z,y) = h(z)k(y). So it contains all non-negative Borel func-
tions on G x G.) Further, for v-almost all y, the set of z € s 1(r(y)) such that
p(x)p(y) is defined and equal to ¢(zy) is conull. Consequently, 1 = ¢, a.e. v.

Now let G2 = {y € Glo(x) '¢(zy) is defined and constant a.e. v, on
s~ 1(r(y))}. Observe that G contains the set B = {y|p(zy) = ¢(2)p(y) for v,(y)-
almost all z € s~ 1(r(y))} which is conull by Fubini’s theorem.. We define 2 : G —
H as follows: If y € G, then ¢(y) is the constant value to which ¢(z)~tp(zy) is
Vr(y)-almost everywhere equal. If y ¢ G, then @2(y) = h. It is not immediate that
o is Borel, but (a restriction of) it is, as we shall see in a moment.

Set ¥ = G1 N Gy. Then ¥ contains the conull set G; N B. We claim that
¥ is closed under multiplication. Suppose (y,z) € G N (X x ¥). Then yz lies
in (G4, since G; is a contraction. To show that yz lies in G5, observe first that
{z|s(x) = r(y) and @(z)p(y) is defined and equal to (zy)} is a vy(y)-conull subset
of s71(r(y)), since y € G2. On the other hand,

{z|s(z) = r(y) and p(zy)p2(2) is defined and equals ¢(zyz)}
= {z|s(x) = 7(2) and p(z)p2(2) is defined and equals p(zz)}y "
is conull with respect to v,(,) on s~'(r(y)), since y € Gy and z € G,. Hence, as a
function of z, p(z) " ¢(zyz) is defined and constant v,(,,)-a.e.on s~ (r(yz)) and the
value is @2 (y)p2(z). This shows that yz lies in G5 and that ps(yz) = p2(y)pa(2).
Apply Lemma 4.9 to find a p-conull set Uy so that Gy := G|y, is contained in
Y and define o : G — H by the formula

{ va2(y), y€Go
h: y¢G0

Then g is Borel. Indeed, if y € Go, then y € G2, and ¢1(y) = @2 (y) because v, ()
is a probability measure. Since ¢, is Borel, so is ¢g|Go, and since Gy is Borel, it
is clear from the definition of ¢y that g is Borel on all of G. Further, ¢g|Gy is
a homomorphism, since 2 is a homomorphism on X. The fact that g = ¢ a.e.v
follows from the fact that o = 1 = ¢ on Gy and the fact that Go is conull. Thus,
o is a weak homomorphism that agrees with ¢ a.e.C. O

vo(y) =

One of the disadvantages of Theorem 4.8 is that there is little control of the
contracted groupoid Gy on which the weak homomorphism, equal a.e.to the given
a.e.homomorphism, is an actual homomorphism. It would be nice to assert that
given an a.e.homomorphism ¢g : G — H then there is a homomorphism ¢, defined
on all of G, such that g = ¢ a.e.(This is what we claimed in Theorem 3.20.)
This can be done, if, as we are assuming elsewhere in our notes, the underlying
groupoid G is o-compact and, in particular, if the groupoid is a 2nd countable,
locally compact groupoid. These discoveries were made by Ramsay in [161], and
we turn now to a presentation of some of the results found there.

First we need some terminology related to the notion of similar homomor-
phisms and (algebraically) similar groupoids discussed in Chapter 2. See Definitions
2.4 and 2.21.
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DEFINITION 4.10. Suppose that (G,C) is a measured groupoid and that, for
i=1,2, p; is a weak homomorphism from G to an analytic Borel groupoid H. Let
U; € GO be a conull subset such that o; |Glu; is a homomorphism from G|y, to
H.

(1) If there is a Borel function @ : G© — H and an inessential contraction
Glu of G, with U C Uy N Us, such that pa(x) = 6(r(x))p1 (x)8(s(x))~ for
all z € G|y, then ¢1 and s are called weakly equivalent and 0 is said to
implement a weak equivalence between @1 and @s.

(2) If the set U in (1) can be chosen to be invariant, then w1 and ¢y are called
equivalent and 0 is said to implement an equivalence between 1 and ;.

REMARKS 4.11. 1. If v1 and g2 are Borel homomorphisms from G to H

that are similar in the sense of Definition 2.4, and the similarity is imple-

mented by a Borel functionb : G© — H, i.e., ps(x) = b(r(z))e1 (z)b(s(x)) !

for all z € G, then v, and @y are equivalent. Thus, equivalence is a weak-

ening of (Borel) similarity.

In [157], ‘weak equivalence’ is called ‘similar’.

3. The terminology suggests that ‘weak equivalence’ and ‘equivalence’ are equiv-
alence relations, and indeed they are, as is easy to see.

4. As we noted after Definition 3.24, equivalent representations, defined there,
should be called weakly equivalent.

N

For the purposes of our discussion here, the advantage of o-compact spaces in
this theory is the presence of Borel cross sections to almost continuous maps. More
specifically, we have the following lemma that is a slight reformulation of Lemma
1.1 in [115] and is based on a result of Federer and Morse [65, Theorem 5.1].

LEMMA 4.12. Suppose X and Y are Polish spaces, and f : X — Y is Borel.
Suppose also that A is a o-compact subset of X that may be expressed as the union
of a sequence of compact sets {K,}o2, on which f is continuous. Then there is a
Borel function g : f(A) — A such that g(f(K,)) C K, for eachn, and f(g(y)) =y,
fory € f(A), i.e., g is a cross section to f.

We will apply this lemma in the context of reduction homomorphisms that we
define in

DEFINITION 4.13. Suppose G is a Borel groupoid and that U is a Borel subset of
G©) . Suppose also that there is a Borel map 6 : G — GV such that s o0 6(u) = u,
u € GO, and such that @(u) = u, u € U. Then the reduction homomorphism
1 = 1)y determined by 6 is defined by the formula

P(x) = 0(r(z)) -2 - 0(s(2)) ",
€.

REMARKS 4.14. Let 1) = 1y be the reduction homomorphism determined by the
Borel map 6 : G — v~ (U), where U C G© is a Borel set. Then

1. The range of ¢ is Gly and ¢ |G|y is the identity on G|y. Further, 1 is
equivalent to the identity homomorphism in the sense of Definition 4.10.
This explains the terminology.

2. If ¢ : G — H is a homomorphism, then ¢ o § implements an equivalence
between @ o) and ¢, and ¢ and @ o) coincide on G|y.

~
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LEMMA 4.15. [161, Lemma 3.1] Let G be a o-compact Polish groupoid and let
C be an invariant measure class on G, making (G, C) a measured groupoid. Suppose
Uy C GO s a conull Borel set. Then there exist a o-compact, conull, invariant set
U C GO, and a reduction homomorphism v of G|y onto Glwnuo)-

PROOF. Since G is the set where r and the identity map agree, and since
both are continuous, G is a closed subset of G, and therefore o-compact. Since
Uo € GO is conull by hypothesis, there is a o-compact conull subset U; C Uy
by [142, Theorem 3.2]. Since U; is o-compact and r is continuous, r=1(U7) is
the countable union of closed subsets of G. Consequently, r~1(U;) is a o-compact
subset of G. But then U := s(r~1(U})) is o-compact and invariant. Further, the
continuous function s|r=!(U;) has a Borel section 6; : U — r~}(U;) by Lemma
4.12. Since Uy is Borel, the map € defined by the formula

o, u € UNUy
0(u) = { 81(u), ueU\Up,
is also Borel. Moreover, 14 is the desired reduction homomorphism. O

THEOREM 4.16. [161, Theorem 3.2] Let G be a o-compact Polish groupoid and
let C be an invariant measure class on G, making (G,C) a measured groupoid. Let
H be an analytic Borel groupoid let ¢ : G — H be a Borel map.

1. If ¢ is a weak homomorphism, then there is a homomorphism v1 : G — H
that is equivalent to ¢ and equals ¢ a.e. C.

2. If v is an a.e. homomorphism, then there is a homomorphism ¢, : G - H
that equals ¢ a.e. C'.

ProoOF. For the first assertion, recall that by definition (see Definition 4.6),
there is a conull set Uy in G© such that ¢ |G|y, is a homomorphism. Apply
Lemma 4.15 to find a o-compact, conull, invariant subset U C G(®) and a reduction
homomorphism 1 : G|y = G|ynw,- Choose a unit u € H(®, arbitrarily, and define
1 : G = H by the formula

_ | ¥(@=), zedly,

p1(z) = { u, p ¢ G|U-
Then ¢; is Borel and it is a homomorphism, since U is invariant. Since U N Uy is
conull and ¢ =¥ = ¢ on Glunw,, ¥1 = ¢ a.e. C. For the second assertion, apply
Theorem 4.8 to find a weak homomorphism g that agrees with ¢ a.e. C, and then
apply the first assertion to find a homomorphism ¢ that agrees with ¢ a.e. C. O

We want to caution the reader that Theorem 4.16 is not the panacea one might
think it is. Certainly, it solves the problem of having to face a.e. homomorphisms,
but what has so far been ignored is the problem of how invariant measure classes
are transformed under homomorphisms. This is a very subtle matter, and while we
will take it up briefly in Section 5, we will not be able to do justice to the subject
in these notes. The interested reader should consult Ramsay’s article [157] for a
thorough treatment.

We conclude this section with a corollary that we promised in our discussion
of quasi-invariant measures in Chapter 3.

PROOF OF PROPOSITION 3.15 IN CHAPTER 3.
The proof is taken from Proposition 1.3.3 of [171]. By Theorem 4.16, it suf-
fices to show that any choice A for dv/dv' is an a.e. homomorphism. Fix a
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choice of A. We first show that A(z~1) = A(ac)*1 ae v. Indeed for all non-
negative Borel functions f on G, we have [ f (z)d =/ f dufl( ) =

[ fa)AE) dvle) = [ F)AG)AR) ity = 110 Y dulz),
which proves that A( HA(z) = 1 a.e. v. To show that A(wy) A(;U)A(y) a.e.
v? | we show that both (z,y) — A(y) and (z,y) = A(zy)A(z)~" are versions of
the Radon-Nikodym derivative dv(?) /d(v(?)) 1. (Actually, we do not know a priori
that v(?) is absolutely continuous with respect to (v(?)~1, but this will drop out
of the proof. Begin by expanding [ [ f(z,4)A(y) d(¥®)~! to get

//fwy )~ //f:vyy1 y ) dv®
= [ [ [ 1@y ) dhvg @) X duw
= [ [ [ 1@y am) da @ dx) dutw
= [ [ 1@ A6 dr @) dviy)

- [ [ fewaw drg@ )

— [ [ 1@ drg @ dviw)
= [ [ [ 1@ ar@ dx) dutw
=//f(a:,y)du(2).

This shows that »(?) is absolutely continuous with respect to (¥(?))~! and that
(z,y) — A(y) is the Radon-Nikodym derivative dv(?) /d(v(?))~!. To show that
dv® Jd(v®) Y (z,y) = A(zy)A(z) ! a.e. , calculate, using the fact that A(z~!) =
A(z)~! a.e. and Fubini’s theorem, to obtain:

//f(%y)A(wy)A(x)—l AW )~!
- [ s e

- / / / £,y A@)A(ey) ™ dha (@) AN (y) du(u)
- / / / @y, y™ ) A@)A ()~ dXE (y) dhy (2) dps(u).
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Then change variables zy — y and write v ' = [ d\, du(u) to continue with

/ / / @y, y™)A@)A(ry) " AN (y) d, () dp(u)
- / / Fy™ ) A AQE™) dV @) (y) dv ()
- / / f@y ) A @) dN@ (y) do(z)

= [ [ [ 10256 v axt (@) dutu)

-// / F@,y ' 2)AG ) AN () dA (y) du(u)

/ / £y, 1) A(y) " NP (@) du(y)
_ / / F(y, ) AW () dv=" (3)
- / / / F(y,) AN () dA, (y) dps(u)
= [ [ [ 1.5 drutw) ax* @) duw
:/f(y,a:)dl/(2)(y,:c).

3. Haar Measures for Measured Groupoids

In [87], Hahn showed that every analytic measured groupoid has a measurable
Haar system in the sense spelled out in the following theorem.

THEOREM 4.17. [87, Theorem 3.9 ff.] Let (G,C) be an analytic measured
groupoid and let v € C be a symmetric probability measure. Then there is a Borel
set U C GO that is conull for r(C) and there is a Borel function P : G|y — (0,00)
such that

1. v has an r-decomposition v = [v*du(u) such that v*(Gly) = 1 for all

ueU.
2. For all non-negative Borel functions f on G|y and for all z € G|y,

[ taP@)ar@w = [ 1wPw ).

3. The map y — P(y)/P(y~') is a homomorphism from G|y into (0, c).

Furthermore, if P' and U' have these properties, then there is a Borel function
¢:UNU" - (0,00) such that P'(y) = ¢(s(y))P(y) for v-almost all y € Glunv -
Thus, if X* = Pv¥|q,, u € U, then {\*}y,cu has the invariance property
of a Haar system (zX*@®) = X"(®) 2 € G|y), and the support property (supp \* =
N(G|v)), but the continuity property is replaced with the measurability condition:
u — [ fdX\* is Borel for each non-negative Borel function f. Further, if v :=
JA¥du(u), v is equivalent to v and y — P(y)/P(y™') is a version of dv/dv="



3. HAAR MEASURES FOR MEASURED GROUPOIDS 63

DEFINITION 4.18. The family {\“}ycu is called a (measurable) Haar system
associated with v, the pair ({\“}yev, p) is called a Haar measure for (G, C) (asso-
ciated with v) and A := P(y)/P(y~!') = dv/dv=" is called its modular function.

The proof is ingenious and requires numerous delicate calculations with Radon-
Nikodym derivatives. In very broad outline, it runs as follows. As we have noted in
Remark 4.4, v determines a measured groupoid structure on G®. In particular,
v?) is equivalent to (¥»(?)~!. In Lemma 3.6 of [87], Hahn shows directly that if
p =dv® /d(v?)~1, then p is an a.e.homomorphism of G(?) into the multiplicative
group (0,00). So, we may apply Theorem 4.8 to find an inessential contraction
G®|y on which p is a homomorphism. If we knew that G(® |y were of the form
G? |G|y, = (Glv,)'? for some subset U; € G, then we could apply the fact
that (G|U1)(2) is cohomologically trivial (See Remark 4.7.) to find a function p
such that p(z,y) = p(z)p(zy) ! a.e.r®. However, with the aid of von Neumann’s
Selection Theorem (See [13, Proposition 1.2.15] or [10, Theorem 3.4.3].), Hahn
finds a conull subset U; C G such that (G|Ul)(2) is conull with respect to v(2)
and is contained in G |y. This suffices to produce the desired function p. But
then the function P of the theorem is almost p(z~!). First set P;(z) = p(z~!) and
set Aj(z) = Pi(z)/Pi(x71). The fact that function A; is an a.e.homomorphism
requires two and a half pages of calculations, leading ultimately to the conclusion
that for all Borel sets £ and F'in G,

/lExp(a:,y) (1 - %) dl/(2)(a:,y) =0.

It follows from the Cathéodory Extension Theorem that the map

Aq(zy)
(2.9) = (1 - Al(x)m(y))

is v?)-null and, therefore, that A; is an a.e.homomorphism. Appealing to Theorem
4.8, U; is pared down further so that A; is equal almost everywhere with respect
to v to a homomorphism A. With this A in hand, P; has to be adjusted slightly
to obtain a new function P so that A(z) = P(z)/P(z™1).

The Haar measure ({A\"}ycr, i) is associated to a symmetric measure v € C.
If one changes the measure v in C' one gets a different, but closely related Haar
measure as the following proposition indicates. It is a variant of Theorem 3.15.

PROPOSITION 4.19. [87, Corollary 3.14] Suppose fori = 1,2, v; is a symmetric
measure in C with Haar measure ({\!}ycuv;, ;) and suppose A; is the associated
modular function. Then there is a positive function ¢ on GO such that the following
equations hold a.e.with respect to C' :

¢os=(dva/dvr)(dpi/dus) or
and
Ay _ pos(du/dps)or

Ar  por(dp/dus)os
In particular, Ay and Ay are cohomologous.

With the existence of a Haar measure on any measured groupoid (G, C) secured,
Hahn proceeds to produce a von Neumann algebra W*(G, C) naturally associated
to (G, C) in [88]. Throughout the discussion, ({A*}ycv,n) will be a fixed Haar
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measure for the measured groupoid G and v will be [ A*du(u). The collection of
all Borel functions f on G such that the quantity ||f||; is finite will be denoted

LT\, p), where

and where the infinity norms are calculated with respect to u. Thus, LI (A, p) is a
measure theoretic analogue of L (G, \) defined after Theorem 2.42. A straightfor-
ward calculation shows that Lf(), u) is also a Banach x-algebra. (See [88, Lemma
1.6].) Note that if the groupoid G were cotrivial, i.e., if G = G(©), then L!(\,u)
would be the bounded Borel functions on G with the L*°(u)-norm. Thus, it is
clear that LT(), u) is quite a bit bigger than L’(G, \). A somewhat more laborious
calculation, but one that is similar to showing that the left regular representa-
tion of a locally compact group is contractive in the L'-norm, shows that the map
L: LY\ pu) = B(L?(v)) defined by the formula

L(f)é(x) = / F@EW™ ) N (y)

Il = max{

u / (@) A" (z)

- / f(@)] A" ()

’
o0

is a *-representation satisfying the inequality ||L(f)|| < ||fll;. (See [88, Corollary
2.2]) Thus, L is the natural extension to L(\, i) of Ind y1 defined, in the locally
compact setting, on C.(G). Strictly speaking, of course, Ind 1 acts on L2(r~1) and
not on L2(v). However, the map W defined on L2(v) by the formula W¢ = £- Az,
where A is the modular function of ({\"}yev, ), is a Hilbert space isomorphism
from L?(v) onto L?(v~!) that intertwines L and Ind u. (See Example 3.28, Defini-
tion 3.29, and Exercise 3.30.)

DEFINITION 4.20. The von Neumann algebra of (G,C), W*(G,C), is defined
to be the weakly closed algebra generated by the image of L.

The definition looks like it depends on the choice of Haar measure ({A%“}ycv, 1)-
However, Proposition 4.19 easily implies that the von Neumann algebra constructed
with another choice of Haar measure for (G, C) is canonically spatially isomorphic
to the von Neumann algebra constructed from ({A\“},cu,u). The following propo-
sition is a summary of some of the analysis in [88].

PROPOSITION 4.21. If (G, C) is a measured groupoid with Haar measure ({\*}yeuv, i)
and if v = [ A\*du(u), the von Neumann algebra W*(G,C) acting on L*(v) is in
standard form. The modular operator A is given by Schur multiplication by the
modular function A of ({A\"}uecu,p) and the modular conjugation operator J is
given by the formula J&(z) = £(z—1) A~ (z).

If G is locally compact, {A"},cq is a Haar system, and if y is a quasi-invariant
measure, then in fact C.(G) with the inner product coming from L%(r~1) is a left
Hilbert algebra and Ind p is the left regular representation of this Hilbert algebra
[171, I1.1.10]. In the absence of a topology on G, Hahn builds a modular Hilbert
algebra in L?(v) by analyzing the distribution of A. One can determine many of
the properties of the von Neumann algebra W*(G,C) in terms of the groupoid
and the Haar measure. For example, W*(G, C) is semi-finite if and only if A is
a coboundary. More comprehensively, the smooth flow of weights associated with
W*(G,C), in the sense of Connes and Takesaki [38] can be described in terms of
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A. Since this has a very interesting groupoid interpretation, we pause to discuss it
here.

This discussion is amplified in [157, Section 7]. Let (G,C) be an ergodic
groupoid and suppose 8 : G = H is a homomorphism of GG into a locally compact
group H. Fix a probability measure v € C with r-decomposition v = [ v*du(u),
and let 7 be Haar measure on H. Consider the subalgebra 2 of L>®(G®) x H, i x 1)
consisting of all functions f such that f(r(x),h) = f(s(z),h-0(x)), for v x n-almost
all (z,h) € G x H. Then 2 is weak-* closed in L®(G(®) x H,u x ) and invariant
under the translation operators {T} }nen defined by the formula

Thf(uak) = f(ua h‘_lk)'

One may then apply Theorem 3.3 of [157] (which repairs a gap in the main theorem
of [119]) to conclude that there is an analytic Borel space (S,w) and an action of
H on S, leaving w quasi-invariant such that if T}, is the action of h € H on L™ (w)
determined by translation by h on S, then there is an isomorphism from 2 to
L*>(w) carrying T}, to T},. Thus the operators Ty, h € H, are realized by the point
transformations on S.

DEFINITION 4.22. The range closure of the homomorphism 0 is defined to be
the action of H on S with the quasi-invariant measure w.

The reason for the terminology is explained in [123] and [157]. The range
closure of a homomorphism is unique up to conjugacy and depends only on the
cohomology class of the homomorphism.

THEOREM 4.23. [88]If (G, C) is an ergodic measured groupoid, then the smooth
flow of weights on W*(G, C) is metrically isomorphic to the range closure of A
regarded as a homomorphism from G to the positive real numbers under multiplica-
tion.

4. Transversals

[4

In [161], Ramsay showed that an arbitrary measured groupoid (G, C) is
close” to being a locally compact groupoid. Specifically, he proved

‘very

THEOREM 4.24. [161, Theorem 4.1] Let (G, C) be a measured groupoid. Then
there is an inessential contraction (G|u,C|y) such that G|y may be endowed with
a second countable, locally compact topology. In particular, G|y is a o-compact
Polish groupoid.

The proof of this theorem is modeled on a theorem of Mackey in [117] that
asserts that if G is an analytic Borel group supporting a o-finite, right quasi-
invariant Borel measure u, say, then there is a topology on G with respect to
which G is a locally compact group and, moreover, u and Haar measure on G are
mutually absolutely continuous. The idea of the proof of Theorem 4.24 is this: Fix
a probability measure v in C' and write its s-decomposition as v = [ v, du(u). As
we remarked earlier, one may assume that there is a g-conull set X C G(© with the
property that v, ;)@ ~ vy, for all z € G|x and each v,, u € X, is a probability
measure. We may also assume that X is Polish and o-compact by Theorem 3.2
on page 29 of [142]. Write G; for G|x. Form the Hilbert bundle X * H defined
by the family {v,}uex, as in Example 3.8. Since v,(;)T ~ vy, for all 2z € Gy,
there is a natural injective unitary representation W of G; on X % H. Further, it
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is easy to see that the sets of constant dimension in X * H are invariant for this
representation. It suffices to assume that X * H is isomorphic to a trivial bundle
X x H. One concludes that W is a Borel bijection between (G; and an analytic
subgroupoid, W (G1), of the Cartesian product of the trivial groupoid on X and
the unitary group U(H) of H, X x U(H) x X . Using W to transfer the measure
v to W(G1), we may apply the result in [142], again, to find a conull o-compact
subset B in W(G1). The groupoid generated by B is conull and o-compact. By
Lemma 4.9 it contains an inessential contraction W(G1|x,) and using Theorem
3.2 on page 29 of [142], once more, Xy may be assumed to be o-compact. Then
W(G1|x,) is o-compact. Now carry the topology on W(G1|x,) back to G1|x, to
get a o-compact Polish topology on Gi|x,. With more work, one can show that
Xo may be chosen so that G1|x, becomes locally compact.

One useful consequence of Theorem 4.24 is that it gives a “common domain
of repair for a.e.homomorphisms”. That is, if (G, C) is a measured groupoid with
locally compact inessential contraction G|y, then by Lemma 4.15, every a.e. homo-
morphism on G is equal a.e. to a homomorphism on G|y. Another is the existence
of “countable sections” and “transversals” that we now define.

DEFINITION 4.25. Let G be a Borel groupoid and let T C G© be a Borel set.

1. T is called a countable section if and only if T intersects each orbit in at
most a countable set.

2. For u € GO, let v* be the measure on G defined by the formula v*(A) =
the cardinality of AN G;u}, AN G;u}|. The set T is called o transversal if
there is a sequence of Borel sets {A,} in G that exhaust G, G = | An, such
that for each n, the function u — v*(A,,) is bounded.

3. T is called complete if the smallest invariant subset [T] of GO containing
T is conull.

The function v — v* is an example of what Connes calls a transverse function
on G [35]. In fact, he calls this particular function the characteristic function of
T. Condition (2) of the definition is what he calls “proper”. Observe that if T' is a
transversal, then for every point u € T, the isotropy group G|,y is countable.

EXAMPLE 4.26. View the torus T? as R? /Z? and denote the image of (0,1) €
R? by [0,)]. Fiz a € R and let R act on T? by the formula [6,¢]+t = (0+t,7%+at).
Then T := {[0,¢]|¢ € R} is a transversal for the transformation group groupoid
G =T? xR and, in fact, T is complete in the strongest sense: [T] = T2. Note, too,
that since [0,9] + 1 = [0,¢ + a], the groupoid G|r = {([0,¢],n)|n € Z}, i.e., G|r
is the transformation groupoid associated to the rotation «.

The following theorem combines Theorems 5.1 and 5.6 in [161].

THEOREM 4.27. 1. If G is a locally compact principal groupoid, then there
is a transversal T in G'©) such that [T] = G©).

2. If (G, C) is a measured groupoid, then there is a complete countable section
in GO,

The thing to note about part (1) of this theorem is that no measures are used.
In particular, it is not assumed that G has a Haar system. The proof uses ideas
of Forrest [73] for building lacunary sections for R” actions. These, in turn, were
inspired by Ambrose’s theorem [2] that asserts that an ergodic, measure preserving
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flow is conjugate to a flow built under a function over a measure preserving trans-
formation. Part (2) follows from part (1) by applying Theorem 4.24 to the orbit
equivalence relation associated to G.

It should also be noted that without some sort of topological assumptions on
the groupoid G, one cannot assert that a transversal T exists such that [T] = G(©).
Indeed, using the fact that there is a Borel set X in the plane whose projection
p onto the z-axis, say, is not Borel (see [108]), the Borel equivalence relation
R = {(z,y)|p(z) = p(y)}, is a standard Borel groupoid which does not have a
transversal T satisfying [T] = R(® “ = ”X. If such a T were to exist then, as
spelled out in [132, p.98], the image of X under p would be Borel.

If T is a complete transversal in a measured groupoid (G, C), then one may fre-
quently replace G by G|r, a groupoid with countable orbits and isotropy groups. In
general, such groupoids are more easy to handle than groupoids with “continuous”
orbits and non-discrete Haar systems. The groupoid G|y also carries a canonical
measure class induced from C, but we will discuss that in the next section. If G is
also principal, so that it is effectively an equivalence relation, then G|y is likewise
principal and, after adjusting T a little, as noted in Remark 3.2 of [66], may be
taken to be standard. Thus, G|t is effectively a discrete Borel equivalence relation
in the sense of

DEFINITION 4.28. Let X be a standard Borel space and let R be a Borel subset
of X x X. Then R is called a discrete Borel equivalence relation if R is an equiv-
alence relation with countable equivalence classes. If R carries a measure class C
making (R,C) a measured groupoid, then we call (R,C) or simply R o discrete
measured equivalence relation.

THEOREM 4.29. [67, Theorem 1] If R C X x X is a discrete Borel equivalence
relation, then there is a countable group G of Borel transformations of X such that
R = {(z,xt) |z € X, t € G} - the orbit equivalence relation determined by G.

The basic idea of the proof rests on the fact that if Y and X are standard
Borel spaces and if 7 : Y — X is a Borel map and countable-to-one, then 7 maps
Borel sets to Borel sets [108, Section 39, III, Corollary 5]. Apply [108, Section
39, III, Corollary 5] to R and its projections, r and s, onto X to decompose R
into a disjoint union of Borel sets, each of which is the graph of a partially defined
Borel isomorphism. These may be further refined and pasted together to produce
a collection C of Borel isomorphisms, each mapping X onto X, such that the group
generated by C has R as its orbit equivalence relation.

If R carries a measure class C' making it a discrete measured equivalence relation
then C' is completely determined by a measure g on X that is quasi-invariant under
any choice of discrete group G whose orbit equivalence relation is R. (See Exercise
3.16.) A Haar measure for (R,C), ({\"}ucuv, 1), is then given by taking A* to be
counting measure on r-fibers, \*(E) = |[ENr~'(u)|, E C R,and u € X = R(®). The
von Neumann algebra of a discrete measured equivalence relation was introduced
and studied in [68], and we will describe a portion of their analysis later.

The collection C produced by Feldman and Moore has the property that each
¢ € C has period 2, i.e., ¢? is the identity. Subsequently, Mercer proved and put to
good use the fact that for each integer n > 1, it is possible to cover R with graphs of
transformations of period n [128]. Also, the group generated by C in the Feldman-
Moore situation does not act freely (nor do the groups produced by Mercer). This
raises the question, first posed in [67], of whether every discrete Borel equivalence

Which chapter?
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can be represented as the orbit equivalence relation of a freely acting discrete group.
In [1], Adams gave an example showing that it is not always possible to do this.?
The analysis of Adams leads one to ask: If R carries an ergodic quasi-invariant
measure, does there exist a freely acting group whose orbit equivalence relation
equals R almost everywhere with respect to the induced measure?

Observe that the collection of transversals in a measured groupoid (G, C) is
o-ring that is a o-algebra only if r~1(u) is countable for each v € G(©). We write
% or %(G) for the collection of all transversals in (G,C). If G is principal and
standard, then G|r is a discrete Borel equivalence relation for each T € ¥. The
following concept was introduced by Connes [35] as a generalization of a similarly
named concept in the theory of foliations. The discussion following it is, to a large
extent, taken from [132, p. 102 ff].

DEFINITION 4.30. Let G be a standard Borel, principal* groupoid, and let A be
a homomorphism from G into (0,00). A measure u on %(G) is called a transverse
measure with modulus A in case p is o-finite and for each T € X, p|T is quasi-
invariant for G|r with modulus A|G|r. The measure p is called invariant if A = 1.

REMARK 4.31. A transverse measure with a given modulus is completely de-
termined by its restriction to any transversal Ty with the property that [To] = GO,
assuming, as we shall, that such a transversal exists. Indeed, let p be a transverse
measure with a given modulus A and write p|r, for the restriction of p to Ty.
The fact that T, is a transversal implies that the source map s restricted to GT°
is countable-to-one. The assumption that [Ty] = G guarantees that s maps G
onto GO, Using [108, Section 39, III, Corollary 5], one may find a Borel cross
section to s|GT°. Following this cross section by r, one obtains a countable-to-one,
Borel map f from G to Ty such that (f(u),u) € G for all u. Then a calculation
shows that p is given on T(G) by the formula

W= At o).

{s€T|f(s)=t}

The meaning of the concept of transverse measure may, perhaps, best be under-
stood through the following observations that are contained in [132, pp. 103,104]
and in [35, pp. 46, 47]. Suppose that X and B are standard Borel spaces
and that p : X — B is a Borel surjection. Let R be the equivalence relation
R = {(z,y)|p(z) = p(y)}. Then R is a standard Borel principal groupoid and B
may be identified with the quotient space X/R. We will assume in this discussion
that there is a transversal Ty with [Tp] = X. Note that to say that T is a transver-
sal for R means, in particular, that T' meets each set p~1(b), b € B, in at most
countably many points. Fix a (o-finite) measure # on B and define v on ¥ by the
formula

(4.1) v(T) = /B T Np ' (b)| dir(b).

Then v is a o-finite measure on ¥. (The reason that v is o-finite is that by a
Theorem of Kuratowski mentioned above [108, Section 39, III, Corollary 5], it is
possible to decompose T into a countable family of subsets, T = |JT;, such that

3We are grateful to Arlan Ramsay for calling this reference to our attention.
40One does not need to assume the groupoid is principal in this discussion, but it makes the
exposition easier.
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p|T; is a Borel bijection.) The fact that v is an invariant transverse measure is now
easy to see. Conversely, suppose an invariant transverse measure v is given on ¥,
and fix a transversal Ty € ¥ such that [To] = X. Thus Tp is a transversal that
maps onto B, via p. Then, using [108, Section 39, III, Corollary 5] once more, it
is possible to find a Borel set Sy C Ty such that on Sy, p is one-to-one and such
that p(So) = B. Let 7 = p(v|So). Then it is easy to see that with this choice
7, the original measure v satisfies equation (4.1). The point to be made is that
for a general groupoid, if the orbit equivalence relation is nice, i.e. if the quotient
space is countably separated, then a transverse measure is essentially the same
thing as a measure on the quotient space. However, when the quotient space is
bad, which happens when the original groupoid carries a properly ergodic invariant
measure class, there are no good measures on the quotient space, but, as it turns
out, transverse measures related to the original invariant measure class still exist,
as we explain in the next section. See Theoerem 4.38.

But first, it may be helpful to digress to explain that Connes defined transverse
measures somewhat differently and more generally in [35]. His approach enables
one to deal smoothly with groupoids that are not necessarily principal. First of all
he defined a transverse function on a Borel groupoid G to be a family of positive
measures {A*},cq such that: 1) u — [ f(z)dA\*(z) is measurable for each non-
negative measurable function f on G (the values of the integrals may be infinite); 2)
each X\ is supported on G¥; and 3) 2A*(®) = A\"(#) for all z € G. Thus, a transverse
function is a measurable Haar system — but with this important difference: the
supports of A¥ need not be all of G¥. The example to keep in mind is the charac-
teristic function of a transversal. (As with characteristic functions of transversals,
Connes usually restricts his attention to transverse functions {A\“},cqw© that are
proper in the sense that G may be expressed as the union of a sequence of sets,
G = JA,, such that v — A“*(Ay) is bounded for all n.) The collection of all
proper transverse functions constitutes a cone £T of sections to the bundle of mea-
sure spaces { M (G™)} eq© over G(O). A positive, additive, homogeneous functional
A on £T is called normal if A(sup v,,) = sup A(v,,) for each increasing sequence {v,, }
in £F that is dominated by some v € £*. Given such a functional and a trans-
verse function v € T, one obtains a measure A, on G(®) defined by the formula
A, (f) = A((f o s)v), where f is a non-negative measurable function on G(©). If
we write y, for the measure on G defined by the equation p, = [v*dA,(u) and if
A : G — (0,00) is a prescribed homomorphism, then Connes calls A a transverse
measure with modulus A in case p, satisfies the equation

Apyt =,

where, recall, p;! denotes the image of p, under inversion. Thus, a little im-
precisely, a transverse measure, according to Connes’s definition, gives a consistent
way of assigning quasi-invariant measures to supports of transverse functions. (The
definition just given is not quite the way Connes defines a transverse measure, but
it is equivalent to his, thanks to Théoreme 3 of [35].) If one restricts a transverse
measure A to the collection of characteristic functions of transversals as defined in
Definition 4.25, one obtains a transverse measure p in the sense of Definition 4.30.
In fact, as Connes proves in Corollary 6 in [35, p. 45], if T is a transversal satisfying
[T] = G and if v is its characteristic function, then A — A, is a bijection between
transverse measures with modulus A in his sense and measures p on 7' that are
quasi-invariant under G| and have modulus Alg/,-
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5. Homomorphisms of measured groupoids. II

In Section 2, we discussed homomorphisms from measured groupoids into arbi-
trary analytic Borel groupoids. We did not impose any measure structures on the
ranges. In order to discuss effectively the problem of relating an invariant measure
class on a groupoid to one on a reduction, it is helpful to understand what is at issue
concerning homomorphisms between two measured groupoids. That is, it is helpful
to understand where the problems lie when the range groupoid has an invariant
measure class. If (G,C¢) and (H,Cy) are measured groupoids and if ¢ : G - H
is a homomorphism, then ¢ carries G(? to H(®). Moreover, ¢(G(?)) may be a null
set in H(©). This happens quite commonly, for example, in the case of reductions
to transversals. Transversals usually are null sets and so if T is one for G, then
the identity map from G|z to G is a homomorphism whose range on (G|7)© =T
is the null set 7' in G(®). For the general theory, therefore, we want to consider
homomorphisms where ¢(G(?) is null, but we do not want ¢(G®) to be too null.
For example, if H were the transformation group groupoid X x I' determined by
a properly ergodic action of a group, I', on a measure space X, then we would not
want to consider homomorphisms ¢ : G — X x T such that ¢(G(®) reduces to a
point. These turn out to be too singular. What is necessary is to single out the
following important class of subsets of the unit space in a measured groupoid and
then to assume that our homomorphisms map these appropriately.

DEFINITION 4.32. If (G,C) is a measured groupoid, then a subset E C G is
called negligible if it is analytic and its saturation [E] is null for r(C).

Note that the saturation of a set E is 7(s71(E)) = s(r~1(E)). Consequently,
if E is analytic, so is [E] by [10, Corollary 1 to Theorem 3.3.5]. Further, E is
negligible iff [E] is negligible, since [E] = [[E]].

Owing to the advances made in [161] and presented in Section 2 above, the
first part of the following definition is slightly different from the definitions given in
[157, Definition 4.9 and Definition 6.1]. We adopt the following notation that we
shall use throughout the remainder of these notes: If ¢ : G — H is a homomorphism

of groupoids, then we write ¢ for the restriction of ¢ to G(©). Then ¢ is a map from
GO to HO,

DEFINITION 4.33. By a homomorphism ¢ : G1 — G2 between measured group-
oids, (G1,C1) and (G2,C2), we shall mean an algebraic homomorphism that is a
Borel map, as in Definition 4.6, that also is regular or nonsingular in the sense
that ¢~ (E) is null with respect to r(Cy) for each negligible subset E C Ggo). A
homomorphism ¢ : G1 — G2 is called an isomorphism if algebraically it is an
isomorphism and if it maps the measure class C1 onto Cy. We will call ¢ : G1 — G2
a weak homomorphism if there is an inessential reduction or contraction G|y, of
G1 such that the restriction of ¢ to Gi|y, is a homomorphism, i.e., in case ¢ is a
weak homomorphism in the sense of Definition 4.6 and the restriction of ¢ to some
inessential contraction is regular in the sense just described. A weak homomorphism
¢ : G1 — G2 is called a weak isomorphism in case there are inessential reductions
Gilv, of Gi, i = 1,2, such that ¢ restricts to an isomorphism of G1|v, onto Ga|y,.
Also, if G1|y, an inessential reduction of G1 then we shall refer to the restriction of
a homomorphism ¢ to G1|y, as an inessential reduction or inessential contraction

of ¢.
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Note that if ¢ : G1 — G2 is an algebraic homomorphism of groupoids, then for
each set E C Ggo), #~'([E)]) is an invariant set that contains ¢~'(F). Therefore,
¢~ ([E]) contains [¢~'(E)]. Thus we may say that a Borel homomorphism ¢ be-
tween measured groupoids is regular precisely when the inverse image under ¢ of
each subset of an invariant null set for r(C>) is contained in an invariant null set
for r(Ch).

It is evident that the composition of homomorphisms is a homomorphism. How-
ever, the problem is that the composition of weak homomorphisms may not make
sense, and one is often faced with the problem of composing these. Ramsay got
around this problem by replacing weak homomorphisms by weak similarity classes
of weak homomorphisms, in the sense of Definition 4.10 and proving the following
fundamental lemma, which is a consequence of von Neumann’s selection theorem.
Since the proof in [157] is a little eliptical, we present one here, thanks to the help
of Arlan Ramsay.

LEMMA 4.34. [157, Lemma 6.6] Let ¢ : (G1,C1) = (G2, C2) be a weak homo-
morphism between measured groupoids and let V be a complete subset of Ggo), i.e.,
assume that [V] is conull with respect to r(C>). Then there is a weak homomor-
phism ¢g from Gy to G5 that is weakly equivalent to ¢ and whose range is contained

mn G2|V.

PRrROOF. First, we may as well assume that Ggo) = [V] because, as is easily
seen, ¢~ ([V]) is a conull invariant set in Ggo). Indeed, if B is a Borel set in G§°)
that is disjoint from ¢='([V]), then ¢(B) is an analytic set disjoint from [V] and
hence is null with respect to r(Cy). Therefore ¢(B) is negligible and so, then, B is
contained in the null set ¢ (¢(B)). Thus B is null.

Since Ggo) = [V], s maps GY onto all of Ggo). By the von Neumann selection
theorem [10, Theorem 3.4.3], there is an absolutely measurable function 6y : Géo) —
GY such that s o fg(u) = u for all u € G(©. In general, one cannot assume that
0o is Borel. However, there is a Borel set Voo C Ggo) that is conull with respect to
#(r(Cy))+7(C3) such that the restriction 6 of 8y to Voo is Borel. Extend 6 to all of
GY) by setting 6(u) = u for u € G\ Vio. Then 6 is Borel and 6~1(GY) contains
Voo- Therefore Vp := 6= 1(GY) is Borel and conull with respect to ¢(r(Cy)) +7r(Cs).
Consequently, Uy:= &‘1(%) is a Borel subset of G§°) that is null with respect to
r(C1). Further, G|y, is an inessential contraction of Gi, Galy, is an inessential
contraction of G2, and the restriction of ¢ to G1 |y, is a homomorphism of G |y, into
G2lv,. Thus, we may reduce to Uy and Vp and assume that the original selection
0o, now called 8, is Borel, maps all of Ggo) to GY and satisfies s 0 6 = 1.

Let ¢o be the composition of ¢ with the reduction determined by 8o ¢, i.e., let
do(z) = 00 ¢(r(z))p(x)d o p(s(x))~L. (Note that ¢y makes sense, since so 6 = ¢.)
Then ¢g is a homomorphism of G into G5 (regularity needs to be checked, but that
is easy, since ¢ (E) = ¢~(E) for every invariant subset of Ggo)) and the range of
¢o is contained in G|y, since the range of § is contained in GY. By construction,
¢o is equivalent to 8 o ¢ on all of G . O

DEFINITION 4.35. [157, 6.7, 6.11, 6.12]

1. Let ¢ : (G1,C1) = (G2,C5) and ¢ : (Ga,C2) — (G3,C3) be weak homomor-
phisms. Then ¢ and 1 are composable in case there an inessential reduction
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G of G1 and an inessential reduction G of Go such that ¢(G}) C G}, and
such that 1|GY is a homomorphism. In this event, we take G so that ¢|G}
is & homomorphism and then define 1) o ¢ to be the weak homomorphism
such that v o ¢|GY is a homomorphism.

2. If, fori =1,2, (G;,C;) is a measured groupoid and if ¢ : G1 — G4 is a weak
homomorphism, then we denote by [P] the set of all weak homomorphisms
from G1 to G2 such that 1) is weakly equivalent to ¢. We write Hom[G1, G5]
for {[¢]| ¢ : G1 — G2 is a weak homomorphism}

3. If, fori = 1,2, and 3, (G, C;) is a measured groupoid and if [#] € Hom[G1, G3]
and [¢] € Hom[G32,Gs], then [¢] o [¢] is defined to be [¢p1 o ¢1], where
(V1] = [¢], [¢1] = [¢], and ¢1 and ¢, are composable.

A systematic application of Lemma 4.34 shows that these notions are well de-
fined and that the composition of weak equivalence classes of weak homomorphisms
is associative (see Section 6 of [157]). It might be helpful to note that these no-
tions are reminiscent of the concept of germs of continuous maps and their algebraic
properties; the notation even suggests this analogy. The difference is that rather
than looking at equivalence classes of maps in neighborhoods of points, focusing on
smaller and smaller sets, one declares maps to be the equivalent if they essentially
agree everywhere, i.e., behavior at infinity is what is important.

DEFINITION 4.36. Given measured groupoids (G,Cg) and (H,Cg), we shall
call a homomorphism ¢ : G — H a strict similarity, and say that G and H are
strictly similar, in case there is a homomorphism ¢ : H — G such that ¢ o ¢ is
equivalent to 1 on all of G (see part (2) of Definition 4.10) and such that ¢ o) is
equivalent to vy on all of H. Likewise, we call a weak homomorphism ¢ : G — H a
similarity, and say that G and H are similar, in case there is a weak homomorphism

¥ : H — G such that [¢] o [¢] = [¢r] and [¢] o [¢] = [ta]

The notions of similarity and strict similarity for groupoids are, of course,
equivalence relations. Two locally compact groups are similar iff they are strictly
similar, and this happens if and only if they are isomorphic. As we noted above,
Mackey called a similarity class of ergodic measured groupoids a virtual group (see
[120, 123]). He shows in [123] that when two groupoids are given by transitive
actions of a locally compact group, then the two transformation group groupoids
are similar if and only if the subgroups coming from a choice of stabilizers in the
two phase spaces are conjugate. Thus he viewed a virtual group is a generalization
of a conjugacy class of closed subgroups of a locally compact group.

REMARK 4.37. It is worthwhile to point out that if (G;,C;), i = 1,2, are mea-
sured groupoids, if (H,Cw) is a third measured groupoid, and if ¢ : G1 — G2
is a similarity, then one obtains a bijection ¢* : Hom[G2, H] — Hom[G1, H] via
composition: ¢*([¢]) = [¢] o [#]. Further, if H is a locally compact abelian group,
then under the evident pointwise operations, the spaces Hom[G;, H] become abelian
groups and ¢* is a group isomorphism. The set Hom[G, H] is also called the first
cohomology space of G with coeficients in H and is then denoted H*(G, H). If H
is abelian, higher cohomology groups, H"(G,H), n > 1, may also be defined and
we will say a little about this later. However, groupoid cohomology is an involved
subject that we shall leave largely untouched in these notes.

Notice in particular that if (G,C) is a measured groupoid and if H = (0, 00)
under multiplication, then we get a well-defined element [A] of H' (G, H) associated
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with the modular function A of any Haar measure for G. Owing to Proposition 4.19,
the class [A] is independent of the choice of Haar measure for G; i.e., it depends
only on the class C. Consequently, we shall call [A] the modular function of C.

The following result, due to Ramsay, is a key result in the theory. It shows
how to give a good measure class to the reduction of a measured groupoid to a
transversal.

THEOREM 4.38. [157, Theorem 6.17] If (G, C) is a measured groupoid and if
V is a Borel subset of GO such that [V] is conull, then there is a canonical measure
class Cly on G|y such that (G|y, Clv) is a measured groupoid that is similar to

G, 0).

OUTLINE OF PROOF. First, we may as well assume that G(®) = [V]. Then s
maps GV onto all of G(®. By the von Neumann selection theorem [10, Theorem
3.4.3], there is an absolutely measurable function f : G(®) — GV such that so f(u) =
u for all u € G, As before, one cannot assume that f is Borel. However, it differs
from a Borel function defined on a Borel set U, say, at most on a set of measure zero.
So, we may assume f : U — GV is a Borel function such that so f(u) = u a.e.r(C)
on the conull Borel set U. Further, since V is Borel, we may assume that U contains
V and that f is the identity on V. Then the set Up := {u € G(@|s0 f(u) = u} is
Borel, conull and contains V. Thus, we may reduce to Uy and assume that there
is a Borel function f : G — GV such that fos = ¢ and such that f = ¢ on
V. The point to keep in mind is that if even if at the outset we had assumed that
GO = [V], we still would have had to reduce to Uy which could very well be proper.

Now let ¢ : G — G|y be the reduction homomorphism determined by f:
¥(z) = f(r(z))zf(s(z))~t, = € G. Then 9 is algebraically a homomorphism from
G onto G|y that certainly is a Borel map. The measure class C|y on G|y is taken
to be the image of C' under 1. A page and a half of arguments show that C|y is an
invariant measure class (see [157, pp. 291,292]) so that (G|v,C|v) is a measured
groupoid.

By definition of C|y, ¢ is a homomorphism of the measured groupoid G to
the measured groupoid G|y. Moreover, by the definitions of f and 4, if ¢ denotes
the identity map from G|y into G, then ¢ o ¢ = 1), and ¢ o1p = 1), while f
implements an equivalence between 1 and i on all of G. This shows that (G, C)
is strictly similar to (G|v,C|v) (assuming that the cross section f is defined on all
of G()., O

This result secures the relation we were seeking in the preceding section be-
tween an invariant measure class C on a groupoid G and a transverse measure on
its o-ring of transversals. What appears to get lost in the process is the precise re-
lation between the modular function for a Haar measure giving C' and the modular
function for a Haar measure in C|r, for a complete transversal T'. However, similar
groupoids have isomorphic cohomology as we indicated in Remark 4.37 and since
the modular homomorphism of a measure class does not depend on any measure
that represents it, it follows that up to weak equivalence a weak similarity between
G and G|r carries the modular function for any Haar measure giving C' to the
modular funciton for any prescribed Haar measure for C|r.

REMARK 4.39. It is worth emphasizing again that given a measured groupoid
(G,C) and a Borel set V C G© such that [V] is conull, even one with G = [V],
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the measured groupoids (G,C) and (G|v,C|v), while similar, may not be strictly
similar. One situation, however, where strict similarity does occur is this: Assume
that G and V' are o-compact (and that G =[V]). Then GV is o-compact and we
may apply Lemma 4.12 to produce a cross section f : G© — GV to s satisfying the
conditions in the proof of Theorem 4.13. By that proof, then, f yields the desired
strict similarity between (G, C) and (G|y,C|v). In particular, this applies when G
1s locally compact and V' is closed, or even F.

It is also worthwhile to point out that similarities between measured groupoids
have a very concrete representation, as the following result shows.

THEOREM 4.40. [66, 161] Let ¢ be a similarity from the measured groupoid
(G,Cg) to the measured groupoid (H,Cg). Then there are complete subsets U C
GO and V. C HO® such that ¢ may be written as the composition, ¢ = 108 o p,
where p is a reduction of (an inessential contraction of) G to G|y, 0 : Gly = H|v
is an isomorphism, and where ¢ is the imbedding of H|y into H.

The proof is based on the fact that G and H have inessential reductions that
carry locally compact topologies [161, Theorem 5.6]. The topologies are used to
guarantee the existence of complete countable sections, see Theorem 4.27. These
are used as in [66, Theorem 5.5] to complete the proof. The theorem is reminis-
cent of the well-known fact that an isomorphism between von Neumann algebras
may be expressed as the composition of a reduction, a spatial isomorphism, and
an ampliation. This analogy is further strengthened by the next two theorems
which show, among other things, that measured groupoids with “continuous or-
bits” are groupoid theoretic analogues of infinite von Neumann algebras. If (G, C)
is a measured groupoid, then it is said to have continuous orbits if for some (and
therefore any) probability measure v € C, r(v)-almost all the measures in the
r-decomposition of v are continuous. In such groupoids (almost) all orbits are un-
countable. In the following theorem, we write I? for the trivial measured groupoid,
[0,1] x [0,1] with area measure.

THEOREM 4.41. [66, Corollary 5.8 and Theorem 4.8] Let (G,Cg) and (H,Cq)
be measured groupoids and let ¢ : G — H be a similarity.

1. If G and H have continuous orbits, then the class of ¢ contains a weak
isomorphism.

2. If G is isomorphic to G x I? and if H 1is isomorphic to H x I?, then the
equivalence class of ¢ contains a weak isomorphism.

As indicated, the theorem is the combination of two results of Feldman, Hahn,
and Moore in [66, Corollary 5.8 and Theorem 4.8], but in a slightly strengthened
form, thanks to the results in [161]. See Ramsay’s Theorem 6.1 in particular. Part
(2) is a kind of stabilization theorem that we shall meet again in the context of
Morita equivalence of groupoids.

THEOREM 4.42. Let (G,C) be a principal measured groupoid with continuous

orbits, then for any complete transversal T in G©, G is weakly isomorphic to
G|r x I?. Further, W*(G, C) is spatially isomorphic to W*(G|r,C|r) ® B(L*(I)).

The first assertion is essentially Theorem 5.6 of [66] coupled with the fact
that every principal measured groupoid is orbitally concrete, Theorem 4.40. The
second assertion follows from the first since a weak isomorphism between groupoids
implements a spatial isomorphism between their von Neumann algebras.



CHAPTER 5

Morita Theory and Equivalence of Groupoids

Morita theory has played a major role in operator algebra for over 20 years. It is
natural to wonder how this notion is reflected in terms of coordinates. Explaining
how is the principal goal of this chapter. We begin by reviewing some of the
salient features of Morita theory for C*-algebras in Section 1. These will provide
models for the groupoid notions. We present more material than we shall need
for this chapter, but the excess will be used later. Then we take up the notion of
equivalent groupoids in Section 2. In Section 3, we prove that equivalent groupoids
have strongly Morita equivalent C*-algebras. The details of the proof are complete
except for one proposition, whose proof will be given in Section 4. This proposition
has as special case Lemma 3.31 in Chapter 3 that played a crucial role in the proof
of Theorem 3.32. Section 5 is devoted to analyzing when the imprimitivity groupoid
associated with a principal G-space has a Haar system. Additional examples and
extensions of the theory will be presented in Chapter 7.

1. Morita Theory for C*-Algebras

Morita theory for rings was invented by K. Morita in 1958 [133], although the
basic notions of the theory were known much earlier. The idea is that two rings
should be identified, i.e., declared equivalent, if they have isomorphic categories of
modules. Thus, for example, for each pair of integers m and n the algebras M, (C)
and M, (C) should be considered equivalent and they all should be considered equiv-
alent to the field of scalars C itself. In 1974, Rieffel realized the relevance of this
idea for the theory of induced representations in [177]. The key construct involved
is what has become known as a Hilbert C*-module. The theory of these, in turn,
may be traced back to Kaplansky’s paper [96]. Kaplansky considered modules only
over commutative C*-algebras, and very little was done with them until Paschke’s
paper [143] and Rieffel’s investigation appeared. Now they are ubiquitous in the
operator algebra literature. We will present the definition and some of the basic
facts about them that we shall need, but we shall refer the reader to two recent
texts where details are presented in a very accessible manner, [109] and [156].

DEFINITION 5.1. Let A be a C*-algebra and let X be a right module over A.
We call X a right Hilbert C*-module over A in case there is a sesquilinear map
(-, -y :XxX— A, that is conjugate linear in the first variable, such that

1. {(z,ya) = (z,y)a, z,y € X, a € A.

2. (z,y)" = (y,2), T,y €X.

3. (z,z) >0 in A and (z,z) =0 only when z = 0.

A left Hilbert C*-module is defined in the same way, except that X is required
to be a left A-module, the pairing {-,-) is required to be conjugate linear in the second
variable, and the equation (ax,y) = a{z,y) replaces the first condition above.

75
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REMARK 5.2. Occasionally, we will begin with a module Xog over a pre-C*-
algebra Ao that is endowed with an Ag-valued inner product (-,-) satisfying the three
conditions of Definition 5.1. The third condition in this context means that (x, )
may be expressed as a*a for some a in the completion A of Ay. Proposition 2.3 of
[143] (and Proposition 2.9 of [177]) imply that the expression ||z| := ||(.2c,ac)||}4/02
is @ morm on Xo. The completion, X, of Xog with respect to this norm becomes a
Hilbert C*-module over the completion A of Ag in an obvious way. Unless explicitly
stated to the contrary, we shall assume that our modules are complete in the norm
just given and when we must consider incomplete modules, we shall use the prefiz
“pre-”, i.e., we shall speak of pre-Hilbert C*-modules over pre-C*-algebras.

REMARK 5.3. Paschke [143, Definition 2.1] calls a Hilbert C*-module over A a
Hilbert A-module. He works on the right, but his inner product is conjugate linear
in the second variable and he assumes the equation (xa,y) = (x,y)a to compensate.
Rieffel [177, Definition 2.8] calls a Hilbert C*-module over A a right or left A-rigged
space. When these lectures were given, we called Hilbert C*-modules Hermitian
operator modules. We felt that ‘Hilbert C*-module’ was too close to another concept
that is in common use, Hilbert module (see Chapters 9 and 10), and we felt that
the emphasis on the term ‘operator module’ was more in tune with the theory of
operator spaces that has become a major industry in recent years. However, ‘Hilbert
C*-module’ seems to have become the accepted term and we shall use it in these
notes.

A word about notation may prove helpful: We shall consistently use sans serif
letters to denote Hilbert C*-modules.

Examples of Hilbert C*-modules are easy to come by. The following list es-
sentially exhausts all the ones we shall use in these notes, thanks to Kasparov’s
Stabilization Theorem (Theorem 5.9 below). Despite the apparent simplicity of the
examples, the theory is quite rich, as we shall see.

EXAMPLES 5.4. 1. Let X = Cp(A) denote the collection of all n-tuples,
n < oo, from A. These form a right Hilbert C*-module over A with the
obvious right action and inner product {(z,),(Yn)) = > xkyn. The space
X =Cx(A) is defined in essentially the same way: it is the collection of all
sequences () such that the series Y x}x, converges in A. For two such
sequences, (z,) and (yn), the sum Y zky, converges in A and defines the
inner product {(x,), (yn)). The spaces Cp,(A) and Coo(A) are called column
space over A (of dimension n, n < 00). The reason for this is that elements
in Cp(A) may be viewed as n x 1 matrices over A and the inner product
of z,y € Cn(A), (z,y), is (x,y) = x*y, where the latter product is matriz
multiplication. In the literature, what we are calling column space over A is
usually called Hilbert space over A. We find the column space terminology
more compelling, however. It calls attention to the operator space structure
on Hilbert C*-module. We will have more to say about this later.

2. More generally, the direct sum of any number of Hilbert C*-modules is a
Hilbert C*-module in an obvious way. Kasparov’s Stabilization Theorem
(Theorem 5.9) asserts that under very mild separability hypotheses every
Hilbert C*-module is a direct summand of Cp,(A) for some n < oo.

3. If X is a right ideal in A, then X becomes a Hilbert C*-module with inner
product {z,y) = T*y.



1. MORITA THEORY FOR C*-ALGEBRAS T

4. Let A be a C*-algebra and suppose B is a subalgebra. (In the non-unital
case, we can extend this discussion in a natural way to allow B to be a
subalgebra of the multiplier algebra of A.) Let P : A — B be a linear map
that satisfies following conditions:

(a) P(a*) = P(a)*, a € A.

(b) P is positive in the sense that P(a*a) > 0 in B for each a € A.

(c) P(ab) = P(a)b, for all a € A and for all b € B.
Then if we define {a1,a2) = P(afasz), it is easy to see that the conditions of
Definition 5.1 are satisfied, except that (a,a) might be zero for some non-
zero a. Dividing out by the elements of “length” zero, we obtain a (usually
incomplete) Hilbert C*-module over B.

REMARK 5.5. Maps of the form P are called (conditional) expectations. Usu-
ally, they are only introduced in the unital setting and then it is assumed that the
identity of A is the identity of B and that P is unital. This assumption guarantees
that the inner product it determines is full in the sense that the span of the elements
(a1,a2) is dense in B. In general, if X is a Hilbert C*-module over a C*-algebra
A, then the span of the elements of the form (z,y), z,y € X, is an ideal in A called
the support of X. We say that the module is full if its support is dense in A.

As anormed linear space, a Hilbert C*-module X carries an algebra of bounded
(i.e. continuous) linear transformations, B(X). However, we will want to restrict
our attention to those that are module maps, i.e., T'(za) = T(z)a, and we will want
to restrict our attention further to those module maps T' € B(X) for which there
is another operator T* € B(X) that satisfies the equation (T'z,y) = (x, T*y) for all
z,y € X. Such a T is called adjointable and we write B(X) for the collection of all
adjointable operators on X.

Actually, as Lance points out on page 8 of [109], if a map T (that a priori
is not even linear) has an adjoint T*, i.e., if T* satisfies (T'z,y) = (x, T*y) for all
z,y € X, then T and T* are module maps and continuous. The fact that not every
element of B(X) need be in B(X) is seen from the following example due to Paschke.

EXAMPLE 5.6. [143, p. 447] Let A = C([0,1]) and let J be the ideal Co((0,1]).
IfX=J® A, with (a®b,a1 ®b1) = a*ay +b*b1, and if T is defined by the formula
T(a,b) = (0,a), then T € B(X), but not in B(X).

A special subcollection of B(X) needs to be singled out. For z,y € X, we
write  ® y* for the “rank one” linear transformation on X defined by the formula
x Q@ y*(2) = z(y,2). Then it is not difficult to see that x ® y* is adjointable, with
(z @ y*)* =y ®x*. We write K(X) for the closed linear span in B(X) of all the
z ® y* as z and y run through X. Elements of K(X) are called compact operators
on X, although they are usually not compact in the traditional sense of the word.

The formulas we have given are presented under the assumption that X is a
right Hilbert C*-module and then we write elements of B(X) and K(X) on the left. If
X is a left Hilbert module over A, we will write operators on the right and for x and
y in X we will write 2* ®y for the operator given by the equation (2)z*®y = (z, z)y.
The following proposition covers most of the basic things we need to know about
B(X) and K(X). The proof may be assembled easily from propositions in [109].

PROPOSITION 5.7. If X is a (right) Hilbert C*-module over a C*-algebra A,
then B(X) and K(X) are C*-algebras, with B(X) equal to the multiplier algebra of
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K(X). Further, X becomes a left Hilbert C*-module over K(X), where the K(X)-
inner product is defined by the formula

K(X) <$,y) =Tr® y*;
and K(x(x)X) is naturally isomorphic to A through the formula

T Rx)®Y = (T, Y)A.

There is an obvious version of this proposition that begins with a left Hilbert
C*-module over the C*-algebra A. For reasons that we shall explain later (See
Theorem 5.23.), K(X) is also called the imprimitivity algebra of the Hilbert C*-
module X.

ExaMPLE 5.8. If X = Cp,(A4), with n < oo, and if A is unital, then B(X) =
K(X) = M,(A) = M, ® A, where we have used equality signs for what really are
natural identifications. If X = Coo(A), then K(X) = K ® A, where K denotes the
compact operators on an infinite dimensional separable Hilbert space. There is no
issue about what tensor product we are using here, since M, (C) and K are nuclear.
If A is unital and X = Coo(A), it is still useful to think of B(X) as B(H) ® A, but
care must be taken since B(H) is not nuclear.

We have discussed operators on a fixed Hilbert C*-module, but the extension
of the notions of adjointable operators and compact operators to operators between
two, possibly different, Hilbert C*-modules is straightforward and clear. Also, an
isomorphism U : X = Y between two Hilbert C*-modules is nothing but a module
map from X onto Y such that (Uz,Uy) = (z,y), for all z,y € X. Such a map is
easily seen to be isometric. The following result was promised above and shows
that our list of examples covers most bases.

THEOREM 5.9. If X is a Hilbert C*-module over a C*-algebra A that is count-
ably generated as a module over A (i.e. if there is a countable subset of X such
that the closed A-module it generates is all of X), then there is a projection P €
B(Cx (A)) such that X is isomorphic to PCy(A).

We like to think of modules of the form C,,(4), n < 00, as the operator analogue
of free modules. Kasparov’s theorem says, then, that all (countably generated)
Hilbert C*-modules over a C*-algebra are projective. This reinforces the idea that
we shall develop in Chapters 9 and 10 that C*-algebras should be viewed as the
infinite dimensional analogue of finite dimensional semisimple algebras.!

DEFINITION 5.10. Let A and B be C*-algebras, and let X be an A-B bimodule.
Then X is called an A-B-equivalence bimodule (or an A-B-imprimitivity bimodule)
in case the following conditions are satisfied:

1. X is endowed with A- and B- valued inner products making X a left Hilbert
C*-module over A and a right Hilbert C*-module over B.
2. The inner products are linked by the formula

A(.Z',Z/)Z = x<y7Z)B7

for all z,y,z € X.

1In algebra, one proves that a finite dimensional algebra is semisimple if and only if each of
its modules is projective.
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3. The action of A on Xp is contractive in the B-norm and the action of
B on aX is contractive in the A-norm, i.e., (azx,azx)p < ||a||*(z,z)p and
A(xbaxw < “b”2A<$am)
4. X has full support in both A and B.
Further, we shall say that A and B are strongly Morita equivalent (abbreviated
SME) in case there is an A-B-equivalence bimodule.

Of course, we need to prove that strong Morita equivalence is an equivalence
relation. We will indicate why this is the case, in a moment, but first observe that
if X is a Hilbert C*-module over a C*-algebra A (either right or left), then A and
K(X) are strongly Morita equivalent. The following easily proved proposition is a
converse assertion that helps to anchor the notion of strong Morita equivalence.

PROPOSITION 5.11. Suppose X is an A-B-equivalence bimodule. Then the map
from K(Xg) to A defined by the formula

z®y" — alz,y)
is a C*-isomorphism. Likewise the map from K(4X) to B defined by the formula
" QY = (z,y)B
is a C*-isomorphism.
Thus, two C*-algebras are strongly Morita equivalent if and only if one can be
realized as the compact operators of a Hilbert C*-module over the other.

The following example ties the opening remarks of this section to the definition
of strong Morita equivalence.

EXAMPLE 5.12. For positive integers m and n, let My, ,(C) denote the col-
lection of all m x n complex matrices. Then My, ,(C) is evidently an M,,(C)-
M, (C)-bimodule in the algebraic sense. But it is easy to see that My, n(C) is an
M, (C) -M,(C) -equivalence bimodule with inner products given by the formulae:

Mo (©) (S, T) = ST
and
(S, TYm,c) = S*T,
S,T € My »(C).
REMARK 5.13. If X is an A-B-equivalence bimodule, then X carries two norms,
one from the A-valued inner product, the other from the B-valued inner product.

Thanks to the second condition in Definition 5.10, or to Proposition 5.11, the two
norms are tdentical.

The following proposition is easy to verify and the proof will be omitted.

PROPOSITION AND DEFINITION 5.14. Let X be a left Hilbert C*-module over
a C*-algebra A. Let X denote the additive group X with the conjugati\agion of C
and the “right starred” action of A: c& := (¢z), ¢ € C, and Fa := (a*z), a € A,
where we write & for z viewed as an element of X. Also, give X the A-valued inner
product: (%,§)a = aly,z). Then X is a right Hilbert C*-module over A called the
dual X. Further, X is isomorphic to K(aX,A) when we identify & with the map
defined by the formula: E(y) = a{z,y).
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Similarly, if X is a right Hilbert C*-module over A, then X becomes a left Hilbert
C*-module over A, isomorphic to K(Xa,A), under the operations: ci := (¢x),

c€C, af := (za*), a € A, and A(%,§) := (y,z)4A.

PROPOSITION AND DEFINITION 5.15. Suppose that X is a right Hilbert module
over the C*-algebra A, thatXY is a right Hilbert C*-module over the C*-algebra B,
and that there is a *-homomorphism ¢ of A into B(Y). On the algebraic tensor
product X ®4 Y balanced over A?, define the B-valued sesquilinear form by the
formula

(z1 @ g1, 22 @ y2) = (Y1, 8({z1,22) 4)y2) B
Then {-,-) satisfies all the conditions of the inner product for a Hilbert C*-module
except that there may be vectors of “length” zero. Dividing out by these, one obtains
a pre-Hilbert C*-module over B whose completion is denoted by X® oY and is called
the internal tensor product of X and Y.

The proof of this proposition is also straightforward and so will be omitted.
Quite often, the emphasis on ¢ will be dropped and we will write ay for ¢(a)y.
One such instance occurs when we discuss strong Morita equivalence and identify
one C*-algebra with the compact operators on a Hilbert C*-module over the other.
The following proposition justifies introducing the dual module and internal tensor
product, proving that strong Morita equivalence is an equivalence relation.

COROLLARY 5.16. If 4Xp is an equivalence bimodule between C*-algebras A
and B, and if gY¢ is one between B and the C*-algebra C, then X ®p Y is an
equivalence bimodule between A and C. Also, X is an equivalence bimodule between
B and A, with X®4 X naturally isomorphic to A as an A-A equivalence and X ® X
naturally isomorphic to B as a B-B-equivalence. Thus, strong Morita equivalence
is an equivalence relation.

THEOREM 5.17. [28, Theorem 1.1] Let X be an A-B equivalence bimodule and
let C be the collection of 2 X 2 matrices

(8 (57)

where a € A, z € X, § € X, b € B. With respect to matriz addition and product
defined by the formula

ar I as T3 _ [ ;a2 + a(z1,Y2) a1z2 + z1b2

g1 b g2 b2 g1az + b1j (y1,%2)B +b1b2 )’
C becomes an algebra that acts in an obvious way on A @ X as bounded operators.
If C is given the operator norm and involution,

a z\° [a y
g b ) &z b )’

then C becomes a C*-algebra. In fact, C is isomorphic to K(A @ X). Further, the

matrices
(14 0 and o — 0 0
P=V10 o =\ o0 15 )’

2This is the quotient of X® Y by the subspace generated by the tensors {za®y —z ® ¢(a)y |
a€A zQyeEXOY}
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where 14 and 1p denote the identities of the multiplier algebras of A and B, are
projections in the multiplier algebra of C' with the properties that p + ¢ = 1¢,
A ~ pCp, B ~ qCq, and the ideals CpC and CqC are dense in C. (Thus, A and
B are isomorphic to what are called complementary full corners of C.)

Conversely, if C is a C*-algebra and if p and q are projections in the multiplier
algebra of C such that A := pCp and B := qCq are complementary full corners,
then X := pCq is an A-B-equivalence with inner products given by the formulae:
A<xay> = l'y*, and <$7y>B = SU:U*, z,y € X.

We do not need the proof here and refer the reader to the original source [28]
or to [156] for details. Among other things, this result makes it clear that an
equivalence bimodule is an operator space. The algebra (1.1) is called the linking
algebra for A and B determined by X. We state one more result, to which we shall
refer later. Again, we omit the proof, referring to [28] or to [156] for details. The
result does not require that the C*-algebras in question be separable; a weakened
form is sufficient.

THEOREM 5.18. [28, Theorem 1.2] If the C*-algebras A and B are stably iso-
morphic in the sense that A® K ~ B® K, then A and B are strongly Morita
equivalent. Conversely, if A and B have countable approzimate identities®, and if
A and B are strongly Morita equivalent, then A and B are stably isomorphic.

Strongly Morita equivalent C*-algebras have “isomorphic representation the-
ories”, i.e., isomorphic categories of Hilbert modules. This will be made precise
through the following definition.

DEeFINITION 5.19. A (left) Hilbert module over a C*-algebra A, or a (left)
Hilbert A-module, is a Hilbert space H that is o left A module in the algebraic
sense such that (a&,n) = (§,a*n), &,n € H, a € A. Equivalently, H is a Hilbert
module iff there is a C*-representation w : A — B(H) such that a§ = w(a)£. An
isomorphism between Hilbert modules is simply a Hilbert space isomorphism inter-
twining the two representations.

One defines right Hilbert modules analogously. However, in these notes, we
shall have no significant use for right Hilbert modules, so unless specified to the
contrary all Hilbert modules over C*-algebras will be left Hilbert modules. Of
course the terminology ‘Hilbert module’ and ‘Hilbert C*-module’ may lead to con-
fusion; care must be exercised when using them. There are important distinctions
between the notions, yet the terminology does not reflect them. Unfortunately,
both terms now seem fixed in the literature.

The “Equivalently” assertion in the definition requires the use of the closed
graph theorem. However, when dealing with pre-C*-algebras acting on pre-Hilbert
spaces, a situation we shall face from time to time, it is necessary to add the
assumption: [|a&|| < |la]|||£]|- Then the completion of the pre-Hilbert space will be
a Hilbert module over the completion of the pre-C*-algebra.

PROPOSITION AND DEFINITION 5.20. Let X be a Hilbert C*-module over B, let
A be a sub-C*-algebra of B(X), and let H be a Hilbert B-module. On the algebraic
tensor product X ©p H, balanced over B, define the C-valued sesquilinear form by

3This assumption is equivalent to the hypothesis in [28, Theorem 1.2] that the C*-algebras
have strictly positive elements; see [147, Theorem 3.10.5].
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the formula

(21 ® &1, 22 ® &) = (&1, (21, 72)BE2)H -

Then (-,-) satisfies all the conditions of the inner product for o Hilbert C*-module
except that there may be vectors of “length” zero. Dividing out by these, one obtains
a pre-Hilbert module over A whose completion is denoted by A H or QH and is called
the Hilbert A-module induced by H via X. If the associated representation of B on
H is 7, then the associated representation of A on AH is called the representation
induced by 7 and is denoted by Ind 7w or Indf .

PRrROOF. The first part of this proposition is really just a special case of Propo-
sition 5.15, with H playing the role of Y. The algebra B in that proposition is
replaced by C in this one. The only thing that needs to be checked, really, is that
A acts by bounded operators on 4H. This is a straightforward estimate using the
fact that (T'z, Tx)p < ||T||*(x,z)p for all z € X and all T € B(X). O

The Hilbert modules over a C*-algebra B, say, form the objects of a category.
For the morphisms, we take continuous, i.e. bounded, linear module maps. That
is, if H; and H, are two Hilbert modules over B, then a module map is simply a
bounded linear transformation 7' : H; — Hy such that Tbh¢ = bT€, for all £ € H,
and all b € B. Expressed in terms of representations, module maps are simply
(continuous) intertwining maps. The following proposition expresses the fact that
the process of inducing Hilbert modules implements a functor between categories
of Hilbert modules. The proof is straightforward.

PROPOSITION 5.21. Let X be a Hilbert C*-module over the C*-algebra B and
let A be a sub-C*-algebra of B(X). If Hy and Hs are two Hilbert modules over B
and if T : Hi — Hy is a B-module map, then I ® T, defined initially on X ©p Hy
extends to a bounded linear map, also denoted by I ® T, from AH; to “H, that
is an A-module map. Further, we have I ® (Th @ T) = I ®Th) & (I @ Tz),
IQTS=(IT)I®S), and (I @ T)* =1 ® T*, under the obvious hypotheses.

This result leads immediately to the following Theorem of Rieffel that shows
that strongly Morita equivalent C*-algebras have isomorphic categories of Hilbert
modules.

THEOREM 5.22. [177, Theorem 6.23] If X is an A-B-equivalence bimodule, and
if H is a left B-module, then as B-modules H and § ({ H) are naturally isomorphic.
Further, the correspondence

H— {H
determines a natural equivalence between the category of Hilbert B-modules and the

category of Hilbert A-modules that preserves irreducibility. The inverse is H —
BH
g H.

It is very important in the theory to know when a representation of, or a Hilbert
module over, a C*-algebra is induced. The following theorem gives a criterion which
turns out to be enormously useful, even though at first glance it may seem somewhat
difficult to apply. It is Rieffel’s generalization of Mackey’s imprimitivity theorem
and it justifies the use of the term ‘imprimitivity algebra’ for K(X).

THEOREM 5.23. [177, Theorem 6.29] Let X be a Hilbert C*-module over the
C*-algebra B and let A be a subalgebra of B(X). Then a Hilbert A-module K is
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(isomorphic to) a Hilbert module induced from a Hilbert module over B via X if and
only if K may be given the structure of a K(X)-module in such a way that

a(k§) = (ak)§
foralla€e A, ke K(X), and £ € K.

We close this section with a somewhat technical lemma that will, nevertheless,
prove quite useful to us. It is due to Phil Green (see Lemma 2 of [82] and its proof).

LEMMA 5.24. Let Ay and By be pre-C*-algebras with completions A and B. Let
Xo be an Ag-By-bimodule that is endowed with sesquilinear maps 4,{-,) and {-,-) g,
satisfying conditions 1) and 2) of Definition 5.1 and condition 2) of Definition
5.10. Suppose, too, that Ag (resp. By) contains an approzimate identity {eq}
(resp. {fa}) (not necessarily normalized) such that each ey (resp. fs) is a finite
sum of the form Y a.(xi,x:), x;i € Xo (resp. Y (Yj,Yj)Bo, Yj € Xo) and such
that (ean,m)B, = (n,m)B, while A,({fp,&) = 4,(&,€) for all £,m € Xo. Then
40(& &) > 0 and (n,n)B, > 0, for all &,m € Xo, and the ideals 4,(Xo,Xo) and
(Xo,Xo)B, are dense in Ay and By, respectively. Thus, if a,{-,-) and {-,-)B, are
non-singular and if the boundedness conditions of Definition 5.10 are satisfied, then
the completion X of Xo becomes an A-B-equivalence bimodule.

PRrOOF. We have (€., m)B, = 3. (A, (Zi, )1, 1) B,
= ) {@i(zi,m)Bo»n) Bo
= D (m@imi,n)Bo) B,
(
(
(

7, $i>Bo <$’ia n)Bo)*

>
=2
2

(
<mi7 n)Bo)*(<n= 'Z'i)Bo)*
<mi7 77)30)*<xi7 n)Bo > 0.

Since (ean,m)B, = (N,M)B,, by hypothesis, we conclude that {n,n)p, > 0, for all
n € Xo. In like fashion, one shows that 4,(¢,&) > 0 in Ag. To see that 4,(Xo,Xo)
is dense in Ag, simply note that for a € Ag, ae, — a, but ae, = > 4,(az;, z;) lies
in 4,{Xo,Xg). The density of (Xo,Xo)B, in By is proved similarly. O

2. Equivalence of Groupoids

We return to our basic topological assumptions made throughout these notes.
Groupoids will be locally compact, Hausdorff, and separable. Likewise, all general
topological spaces involved will be assumed to be locally compact, Hausdorff, and
separable.

In Definition 2.16, we defined the set theoretic or algebraic notion of equivalent
groupoids. In the topological setting, we require more than just algebraic condi-
tions. First, recall (Remark 2.32) that for a continuous left action of a groupoid
G on a topological space X the map r : X — G© must be continuous and open.
Likewise, for right actions, s must be continuous and open. It is worthwhile to
point out that the assumption that r or s be open for actions of groupoids is one
that is not universally adopted in the literature. However, for our purposes, it is
essential. Of course G-actions are groupoid counterparts to modules. The analogue
of a Hilbert C*-module is a principal G-space, a notion that we now develop.
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DEFINITION 5.25. Suppose the groupoid G acts continuously on space X. Then
we say the action is proper if and only if the map ® from Gx X to X x X defined
by the formula ®(v,x) = (yx,x) is proper in the usual sense, i.e., for each compact
subset K C X x X, ®~Y(K) is compact in G x X.

Properness for right actions has the obvious parallel definition. Observe that
if a groupoid acts properly on a space, then the isotropy groups of points in the
space are all compact. Much more is true, as the following proposition from [140]
shows.

PROPOSITION 5.26. Let G be a groupoid acting on a space X to the left, say,
and assume that the action is free (i.e., assume that if yx = z then v = r(x).)
Then, with the notation of Definition 5.25, the following assertions are equivalent:

1. The action is proper, i.e., ® is a proper map.

2. ® is a closed map.

3. ® is a homeomorphism of G x X onto a closed subset of X x X (with the

product topology).

4. Given a compact subset K C X, the set G(K) :={y e G |yKNK # 0} is

compact in G.
5. Given a compact set K C X, G(K) is relatively compact in G.

PRrROOF. The equivalence of the first three assertions follows from [25, 1.10.1
Proposition 2]. If @ is proper and if K C X is compact, then @ }(K x K) is
compact in G*X. But then G(K), which is the projection of ® 1(K x K) onto the
first factor, GG, is compact. Thus each of the first three assertions implies the fourth.
Obviously, the fourth implies the fifth. If the fifth is satisfied, then for each compact
K C X, G(K) is relatively compact and so, therefore, is ®~1(K x K) C K * G(K).
Since ®!(K x K) is closed, we conclude that & !(K x K) is compact. This is
enough to conclude that @ is proper. O

Compact sets K in X with the property that G(K) is relatively compact are
called wandering. Thus, the proposition says that the action is proper if and only
if all compact sets are wandering. The proof of the following proposition is taken
from [140, Lemma 2.1] and [80, Theorem 14].

PROPOSITION 5.27. Let G act continuously on a space X, on the left, say.
Then the quotient map 7 from X to G\X is open. If the action is proper, then the
quotient space G\X is Hausdorff.

PROOF. Suppose U is open in X. To show that 7(U) is open, it suffices to
show that G- U = {yz | (v,2) € GxU} isopen in X. If ; - vz € G - U, then
r(z;) = r(y-x) = r(y). Since r is open, we may pass to a subnet and assume that
there are v; in G converging to 7 such that 7(y;) = r(x;). Then v; *z; — z and
S0 7y; 'z; is eventually in U and therefore z; = ; (v '2;) is eventually in G - U.
Thus G - U is open. If G\X were not Hausdorff, we could find a net {[w,]} in
G\ X converging to two distinct points [y1] and [y2], where we write [z] for 7(x).
Since 7 is open, we may find two nets {z,} and {z}, with [z,] = [z]] = [wa]
such that z, — y; and z/, — ys. Since [z,] = [z}], we may write 2!, = V.24
for suitable vy, € G. Choose a compact neighborhood U; of y;, i = 1,2. Since the
action is proper, the set U; U Uz is wandering, by Proposition 5.26. Consequently,
the v, all lie in some compact subset of G for sufficiently large a. Passing to a
subnet, if necessary, we may assume that the v, converge to some . Then by joint
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continuity of the action, £, — y1, and z!, = Yoo — Y1 Since z/, = yo and X
is Hausdorff, we conclude that vy; = y», contradicting the assumption that [y1]
(= [vy1]) is distinct from [ys]. O

DEFINITION 5.28. Let G be a groupoid acting on a space X. We call X a
principal G-space if the action is free and proper. If X and Y are two principal
G-spaces, then a homomorphism from X to Y is simply a continuous, equivariant
map from X toY. An isomorphism is an equivariant homeomorphism.

In the literature, a principal G-space, where G is a group, is also called a Cartan
principal bundle [113]. This is to distinguish the structure from what is usually
called a principal G-bundle, vis., a locally trivial Cartan principal bundle. The
notion of a locally trivial principal G-space makes sense in the case of groupoids
and plays important roles in applications of groupoids to geometry. Such spaces
arise, too, in operator algebra, as we shall see in Chapter 7.

Examples of principal G-spaces are easy to obtain, but there are certain diffi-
culties with which one must come to grips in our general setting in order for the
theory to function smoothly.

EXAMPLES 5.29. 1. The simplest is the case when the groupoid G acts upon
itself by either right or left translation.

2. More generally, let F be a closed or open subset of G(© and consider the
space G (= s~Y(F)). In either case, G|F is a locally compact groupoid. Set
theoretically, G|r acts on G to the right and the action is certainly free,
but the continuity and properness of the action are at issue. First of all, if F
is open, then certainly the restriction of s to Gp is open as a map from Gp
onto F' and then it is easy to see that the action is continuous. Properness
is also clear since the map (y,a) = (v,7v0a), from Gr x G|r to Gr x Gp,
has inverse (£,n) — (£,671n). Thus, when F is open, Gp is a principal
G|p-space. When F' is closed, the situation becomes more complicated. The
restricted map s|Gr need not be open, but it if it is, then again GF becomes
a right principal G|r space.

Now assume that r maps Gg onto G . This is the same as assuming
that the smallest invariant subset of G containing F is all of G©. Then
it is easy to see that G becomes a left principal G-space precisely when the
restriction of r to Gp is open as a map from G to G©. The problem is
that this does not seem always to be the case. The transformation groupoid
determine by the discrete reals acting on R with the usual topology yields a
transformation group groupoid such that r|G,, is not open for any u € GO =
R. In many cases of interest, however, r|Gr is open.

3. A particular case where r|Gp is open is when G is transitive (and locally
compact, Hausdorff, and second countable, as we usually assume) and F =
{u} for some unit u € GO. This is proved in Theorems 2.2A and 2.2B in
[136]. Thus, in this case, for each u € GO, G, is a left principal G-space.

As we said at the outset of this section, the notion of principal G-space is
an analogue of a Hilbert C*-module. The groupoid analogue of the imprimitivity
algebra of a Hilbert C*-module is called the imprimitivity groupoid (of a principal
G-space). We met this notion in Chapter 2 (Definition 2.15), but without any
topology involved. Here we take a moment to develop the salient features. We

L.O.U.
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begin with the following lemma from [136, page 7] that proves to be useful in a
number of contexts.

LEMMA 5.30. Suppose that X, Y, and Z are topological spaces (not necessarily
locally compact, etc.) and that f and g are maps from X and Y, respectively, into
Z. Let X+Y = {(z,y) € X xY | f(z) = g(y)} and give X +Y the relative topology
in X x Y. Consider the commutative diagram

X
TX f

/ hY

XxY Z:

he e
Ty g
Y
where mx and Ty are the projections of X *Y onto X and Y, respectively. If f is
open and g is continuous, then is Ty is open.

PROOF. Indeed, if U and V are open in X and Y, respectively, then 7y ((U x
VIYN(X *xY)) = g~ [f(U)]NV. Since sets of the form (U x V)N (X *Y) constitute
a basis for the topology on X %Y, the result follows. The following theorem is
contained in Theorem 3.5 of [140]. O

THEOREM 5.31. Let H be a groupoid and X a right principal H-space. Then

1. With respect to the quotient topology, X xg X°P is a (locally compact, Haus-
dorff, second countable) groupoid.

2. The canonical left action of X xg X°P on X is continuous, free, and proper,
making X a left principal X xg X°P-space.

3. The actions of H and X xg X°P commute, and s : X — X/H induces a
homeomorphism from X/H onto the unit space of X xg X°P while r : X —
X xg X°P\ X induces a homeomorphism from X xp X°P\X onto H(®.

Thus, X is an equivalence between H and X xg X °P in the sense of the following
definition.

DEFINITION 5.32. Let G and H be groupoids. We say that a space X is a
(G, H)-equivalence in case

1. X is a principal left G-space and o principal right H -space.

2. The actions of G and H commute.

3. The map r : X = GO induces a homeomorphism between G© and X/H,
i.e., r(z) = r(y) if and only if there is a (necessarily unique) n such that
zn =y, and the map s : X — H® induces a homeomorphism between H(®
and G\ X.

Further, we shall say that two locally compact groupoids G and H are Morita

equivalent in case there is a (G, H)-equivalence.

Of course, the terminology presumes that being related by having an ‘equiv-
alence’ is an equivalence relation among groupoids. This is indeed the case and
easily proved, so we shall not pause to prove it here.

PRrROOF OF THEOREM 5.31.
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Evidently, since X is a locally compact principal H-space, so is X x X°P_ with
the relative topology. By Proposition 5.27, X xg X °P is a locally compact Hausdorff
space with the quotient topology. Inversion ([x,y] — [y,x]) is certainly continu-
ous. To see that multiplication is continuous, we use Lemma 5.30: Consider the
commutative diagram:

XsxXor B X
T L,
X g X® 5  X/H

where p; denotes the projection onto the first factor, and 7 and 7 are the quotient
maps. The maps 7 and 7 are continuous and open by Lemma 5.27. Also, since
X % X°P ig a fibred product over continuous open maps s and r°P, p; is open by
the open factor lemma, Lemma 5.30. Consequently, r is continuous and open by a
straightforward diagram chase. Of course the source map on X g X °P is continuous
and open since it is the composition of r and inversion.

To see that multiplication is continuous, consider the following diagram

X+ XPx X in) X x X°P
2R Lo
(X *HXOP)*(X *HXOP) T—n> X*HX°p

where § is the quotient map, m(x1,x2,23) = (x1,%3), m is multiplication on
X g X°P, and p1(x1,22,23) = ([#1,22],[T2,23]). Since g and M are continu-
ous, to show that m is continuous, it suffices to prove that the range of p; is all of
(X #g X°P) % (X *g X°P) and that p; is open. For the first assertion, observe that
([#1, z2], [1h, 23]) € (X % X OP)x (X % X °P) iff [x2] = [x}] and this happens if only if
there is an n € H such that zon = ). In this event, [z}, 23] = [z27, 23] = [22,Z37)].
Therefore, p1(z1,22,23n) = ([21,z2)], [T}, z3]). For the second assertion, note that
p is open by Lemma 5.27. Also, note that if z, — =z, and [z4,y.] — [2,y], then
Yo — Y. (To see this, it suffices to show that every subnet of {y,} has a sub-
net converging to y. So assume, after relabeling, that {y,} is a given subnet of
the original net of y’s. The openness of p implies that we may pass to a subnet
of {ya}, if necessary, which we continue to write {yo}, and find 7, € H such
that (ZaNa,M, ' Ya) — (x,y). Thus, in particular, £4n, — . The properness of
the H-action on X, and the fact that z, — z, imply that 7, — s(z) = r°P(y).
Therefore, yo = a5 '¥a) — m°P(y) -y = y.) So, to show that j; is open, it
suffices to show that if a net {([z$,2%], [z, 2Z])} converges to ([z1, z2], [T2, z3]) in
(X g XOP) % (X xpg X°P), then a subnet of {(z§,z5,2)} converges in X % X°P x X.
Since {[z{,x$]} converges to [z1,z2], we may pass to a subnet, if necessary, and
find n, € H, such that {z§-n,} and {n,'-z$} converge. We may therefore replace
¢ -1, by ¢ and replace i1 - x$ by 2§ and assume that {z$} and {z$} converge.
But then the assertion that we just proved shows that necessarily {z$} converges,
too, proving that p; is open. This completes the proof of the first assertion of
Theorem 5.31.

For the second, recall that the map r from X to (X xz X°P)(®) = X/H in
the definition of the left action of X gy X°P on X is just the quotient map .
So (X # X°P) X = {([z1, 2], @5) | [2] = [zs]}, and given (z1, 73], 25) in this
space, there is an n € H (which is unique, by the free action of H on X) such that
z2 = nz3. The action of [z1,z2] on z3 is defined by the equation [z1,z2] - 3 =
[x1m, 23] - £3 = z1m. That this determines a well defined, free action of X % X°P
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on X is now easily checked. To see that it is continuous, first consider the map
®: X« H - X x X defined by the equation ®(z,n) = (z,z - 7). Then the fact
that X is a principal H-space means that ® is a homeomorphism onto its range,
X #. X (Lemma 5.26). It follows that the map § : X x. X — H, defined by the
formula §(z, x -n) = 1, is continuous, since it is the composition of ®~! followed by
the projection onto the second factor. (In the literature, § is sometimes called the
division map associated with the principal H-space [113].) The continuity of the
X g X°P action follows from analyzing the commutative diagram

XxXPxX XxH
pxi I L @)z

X xg XPxX — X
where the bottom horizontal arrow represents the action ([21, 2], x3) — [21, 2] 3.
The right vertical map is continuous by assumption and we just showed that ¢ x §
is continuous. Since p is open by Lemma 5.27, so is p x 4. Thus, the continuity of
the lower horizontal map, i.e. the X xg X°P action, follows from the obvious chase
around the diagram. Since the X xgy X°P action is free, to show that it is proper,
we need only show that the map ¥ : X xg X°P * X — X x X, defined by the
formula ¥(v,z) = (z,vz), is closed. So suppose {7,} and {z,} are nets such that
Zo — x and such that v, - £ — v in X. By definition of the X xg X°P action, we
may write each v, 88 [Ya, Za], With [Ya, Za] - Ta = Yo- By hypothesis, yo, — y and
o — x. Therefore, [ya, o] = [y, 2], and y = [y, z] - z. This shows that ¥ is closed
and completes the proof of the second assertion in Theorem 5.31. Since the other
assertions of the theorem are now easily verified, we conclude the proof here. O

iX§
—

It is instructive to review Examples 5.29 in the light of Theorem 5.31 and
Definition 5.32.

EXAMPLES 5.33. 1. A groupoid is always equivalent to itself via itself. That
is, if G is a locally compact groupoid, then G acts to the left and right on G
by translation and it is easy to see that G becomes a G-G-equivalence.

2. It is possible and useful to think of equivalence as generalizing the notion
of isomorphism. Specifically, if G and H are locally compact groupoids and
if p : H — G is a homeomorphic isomorphism, then G becomes a G-H -
equivalence by letting G act on G via left translation and by letting H act
on the right of G via the formula: v -1 := vp(n).

3. If G is a transitive groupoid (locally compact, Hausdorff, and second count-
able, as always), if u € GO is any unit, and H is the isotropy group of u,
then Gy, is a G-H-equivalence. This is proved as Ezample 2.2 in [136].%

4. As a particular case of the preceding erample, suppose that X is a locally
compact Hausdorff space that is connected, locally arcwise connected, and
semilocally simply connected, then its fundamental groupoid is transitive and
equivalent, in the sense of Definition 5.32 to the fundamental group based at
any point. One may use the universal covering space of X to implement the
equivalence. For details of this, see [170, p.133 fI.]. One does not need to
assume that X is second countable here because the groupoid is locally trivial
in the sense that for each unit u € G© the map r|G, has local continuous
sections. (See[200] and [113] for discussions about locally trivial groupoids.)

41t may be helpful to note that the proof of Example 2.2 in [136] uses Proposition 2.40
without comment.
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5. If R is an open equivalence relation on a locally compact Hausdorff space
X such that, as a subset of X x X, R is closed, then X implements an
equivalence between R, as a groupoid, and the locally compact space X/ R as
a cotrivial groupoid.

6. Suppose that H and K are groups acting freely and properly on a locally
compact Hausdorff space X and assume the actions commute. Say K acts
on the left and H acts on the right of X. Then by Lemma 5.27 the quotient
spaces K\X and X/H are locally compact and Hausdorff and the quotient
maps are open. The action of K passes to X/H and the action of H passes
to K\X. The space X, then, becomes an equivalence between the transfor-
mation group groupoids K x X/H and K\X x H. This observation was first
made by Rieffel in [178].

7. If G is a locally compact groupoid and if F C G is a closed subset that
meets each orbit in G, then if the restrictions of r and s to Gr are open,
then Gr is a G-G|p-equivalence. This situation occurs in the theory of
foliations. If G is the holonomy groupoid of a foliation and if F is a (not-
necessarily-connected) transverse submanifold that meets each leaf, then the
restrictions of r and s to Gp are open and G is a G-G|p-equivalence.
(See [37] and [93].) A particular instance of this may be found in Example
1.1. The transformation group groupoid G determined by R acting on the
2-torus, as described there, is the holonomy groupoid of the foliation of the
2-torus by lines of slope o.. The unit space of the groupoid is T?. The circle
F :={[0,0] | 8 € R} is a transversal and it is a simple matter to check that
the restrictions of r and s to Gr are open. The groupoid G|r is the groupoid
determined by the action of Z acting on T through translation by a. (See
Ezample 4.26.)

REMARK 5.34. In connection with the last example, it should be noted that
there are situations where one may “cut down” to a transversal that is neither open
nor closed in order to build Morita equivalent groupoids. For a discussion of some
of the things that can happen here, see

REMARK 5.35. Suppose that G and H are groupoids of the kind we have been
considering and suppose that X is o (G, H)-equivalence. Then we can build a new
groupoid, denoted L, that is the disjoint union of G, H, X, and X°P arranged

formally as a matriz
H Xc°p
L= (2 %),

The notation is to indicate the obvious multiplication rules, where we have to re-
member that we identify H with X xg X°P and G with X°?xg X, so that for x € X,
and y € XP, [z,y] is viewed as an element in H and [y, z] is viewed as an element
of G. When this is done, it is easy to check that L is a groupoid with unit space
HO UGO . In fact, giving L the natural topology, making H, G, X, and X°P all
open and restricting to the original topologies on each of the pieces, we see that L is
a locally compact groupoid with the property that H® and G© are complementary
closed and open sets, each meeting every orbit in L0 whose union is L(®). Fur-
ther, L|go) is naturally isomorphic and homeomorphic to G and L| g is naturally
isomorphic and homeomorphic to H. The groupoid L is called the linking groupoid
of the equivalence X . It is the groupoid analogue of the linking algebra of a strong

Get references from
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Morita equivalence beteween C*-algebras as described in Theorem 5.17. Conversely,
if L is locally compact groupoid and if U and V' are complementary closed and open
subsets of L(®) that meet each orbit, then the restrictions of r and s to LU and
to LV are continuous and open. It follows, then, that the three groupoids L, L|y,
and L|y are all Morita equivalent. In fact, LY, is an L|y-L|y -equivalence and L is
homeomorphic and isomorphic to the linking groupoid determined by L|y, L|v, and
Lg. Thus we see that Morita equivalence of groupoids can be fully carried out in
the context of linking groupoids. (For completeness and accuracy, we should note
that no mention has been made of Haar systems here. These will be incorporated
in Section 5.) This approach Morita equivalence is taken in Kumgjian’s work listed
in the bibliography. See [102], in particular.

3. Equivalence and Strong Morita Equivalence

Throughout this section, G and H will be locally compact groupoids of the
kind we have been considering, with Haar systems {A\},cq and {8%},cqo,
respectively. We shall write A, for C.(G, ) and B, for C.(H, ). These are pre-
C*-algebras and we write A and B, respectively, for their completions. Further,
X will be a G-H-equivalence. The space C.(X) becomes an A.—B.-bimodule in a
natural way. In order to define this structure, we require

LEMMA 5.36. [136, Lemma 2.9] Let Z be a (left) G-space.
a) If F € C.(G x Z), then the equation

o, 7) = /G F(y,2)d\"(7)

defines an element in C.(G®) x Z).
b) If Z is a principal left G-space and if f € C.(Z), then the equation

MDD = /G Fr - 2) ax ) ()

defines an element of C.(G\Z) (where, recall, r : Z — G'©) denotes the map
that comes as part of the definition of left G-space and where [z] denotes the
orbit of z € Z.)

Similar assertions hold for right actions of groupoids.

REMARK 5.37. The map f — A(f) is, in fact, a surjection from C.(Z) onto
C.(G\Z). This could be proved here, but we will not need the fact until the next
section, when we prove Proposition 5.39. See Lemma 5.46.

ProOF. For part a), it suffices to consider functions F of the form F(v,z2) =
f(Mg(z), with f € C.(G) and g € C.(Z). The assertion, then, is immediate from
the properties that {\"},cq has as a Haar system. For part b), view \(f) as
a function on Z that is constant on orbits. (This is possible, since {A*},cqw is
left invariant.) Since the statement about supports is straightforward, we show
that 5\( f) is continuous at any prescribed z € Z. From the properness of the G
action (see part 5) of Proposition 5.26), there is an F' € C.(G x Z) such that
F(v,2) := f(y '2) near z. The result now follows from part a). O



3. EQUIVALENCE AND STRONG MORITA EQUIVALENCE 91

To define the A.-B.-bimodule structure on C.(X), let f € A., g € B., and
@ € Ce(X). Then f - and ¢ - g are defined by the formulae:

(3.1) f o) = /G F)p(y ) @) ()
and
(3.2) 0 gz) = / o(en)g(n™) dB*® ().

Part a) of Lemma 5.36 shows that f - ¢ and ¢ - g are, indeed, in C.(X). It is
straightforward to check the various algebraic laws that must be satisfied to make
C.(X) an A.-B.-bimodule and so these will be omitted.

The space C.(X) also is endowed with A.- and B,- sesquilinear forms, denoted
A(-,-) and (-, -) B, respectively. They are defined by the formulae:

(3.3) Al 0) = [ plyan)iem as*) )
and
(3.4) (o, ) B(1) = /G (v Ty (y an) dA) (v),

where in the first formula, z is any element of X such that 7(z) = s(v), and in
the second formula, z is arbitrary, subject to the constraint that s(z) = r(n). Of
course, we need to check that these expressions are well defined, i.e., independent
of z, and give bona fide functions in A, and B, respectively. Consider z in equation
3.3. If x; also satisfies r(x1) = s(y) = r(x), then since X is a G-H-equivalence,
there is a unique 7y such that z; = zng. Since the Haar system g is left invari-
ant, [ o(yan)i(en) dB*®) (n) = [ e(yz1n)¢(z1n) dB**) (n). A similar argument
works for z in equation 3.4. To show that these functions are in A, and B, first note
that X *; X := {(z,y) € X x X | s(z) = s(y)} is a principal G-space. Therefore,
for ¢ and ¢ in C.(X), the function

B(z,y) == / oy L) (y ) AN ()

defines an element in C.(G\ X *;X) by part b) of Lemma 5.36. But also, (¢, ¢¥)s(n) =
®(z,zn), which is independent of z satisfying s(x) = r(n), as we just observed.

Also, it follows from the properness of the H action that {p,%)p(-) has compact

support in H. For continuity, simply observe that if n, — 7 in H, then since s

and r are open, we can pass to a subnet if necessary and find z, — z in X such

that s(z.) = r(na). But then (p,¥)5(na) = ®(Ta,Tana) = (2, 21) = (@, ¥)B(N)-

This implies that (p, %) (-) is continuous. A similar argument shows that 4 {p,¥)(:)

isin A..

THEOREM 5.38. [136, Theorem 2.8] If G and H are second countable, locally
compact, Hausdorff groupoids with Haar systems A and (8 respectively, and if X is
a G-H -equivalence, then with respect to the operations defined in equations 3.1) —
3.4), Ce(X) becomes a pre-Hilbert C*-module over both C.(G, ) and C.(H, () in
such a way that the completion of C.(X) (with respect to both inner products) is an
equivalence bimodule between C*(G, ) and C*(H, f3).
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The proof rests squarely on the next proposition, which we prove in the next
section. First, however, we list a number of algebraic facts whose proofs are straight-
forward calculations and will be omitted. It is important to note, nevertheless, that
arguments similar to those used in the proof of Lemma 5.36 show that the opera-
tions are continuous in the inductive limit topology.

frale. ) =(f-v.0), [ €A, .9 € Ce(X).
(o, ¥)B-9={p,¥-9)B, g€ Be, p,¢ € Cc(X).
Alp, )" = 4, ),
(p, V) = (¥, ¢)B, and
Alp, ) =9, B, 9,9, € Ce(X).

PROPOSITION 5.39. [136, Proposition 2.10] Under the hypotheses of Theorem

5.38 there is a sequence {er} in C.(G) consisting of elements of the form

ng

er =) alek, b,

i=1
where each @¥ lies in C.(X), that serves as a two-sided approzimate identity for
C.(G, A) in the inductive limit topology and has the property that ey, - ¢ — ¢ in the
inductive limit topology on C.(X) for each ¢ € C.(X). Similar statements hold for
H.

PROOF OF THEOREM 5.38

The formulas preceding Proposition 5.39, the fact that the inductive limit topol-
ogy is finer than the C*-norm topology, and Proposition 5.39 combine to allow us
to invoke Lemma 5.24. We conclude from that lemma that the inner products
a{-,-) and (-, -) p are positive semidefinite and that their ranges are dense in A, and
B., respectively. We may clearly pass to the quotient of C.(X) by the space of
functions of norm 0, calculated with respect to either inner product, and assume
without loss of generality that the inner products are definite. The only thing left
to verify, then, is that the actions of A, and B, on C.(X) are bounded. That is, we
need to show that for all f € A., g € B, and ¢ € C.(X), the following inequalities
hold:

(F-o,f- o) < IflAle, )5,
and

Alp 9,0 9) < |IfIIE ale, @)

We shall verify the first; the second is handled similarly.
Let ¢ be any state on B = C*(H, 3) and observe that C.(X) becomes a pre-
Hilbert space with respect to the inner product

('7 ')C = C((a )B)
Let K denote its Hausdorff completion and let Ky denote the image of C.(X) in
K. We shall view elements of Ko simply as functions in C.(X). Define L from
B. = C.(G) into the linear transformations on Ky by the formula L(f)é = f - &,
& € C.(X). Then:
a) L is non-degenerate in the sense that the span of {L(f)¢ | f € C.(G), & €
Ky} is dense in K. This is immediate from Proposition 5.39.
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b) For each £, € Kp, the functional L¢ ,, : C.(G) — C, defined by the formula
Le o (f) = (L(f)E, m)¢ = C({f-& n)B) is continuous with respect to the induc-
tive limit topology on C.(G). This is because f — (f - &,7n)B is continuous
with respect to the inductive limit topologies on C.(G) and C.(H) and the
inductive limit topology on C.(H) is finer than the C*-norm topology on
C.(H) C B.

¢) Finally, for all f € C.(G), and all &7 € Ko, (& L(f*)n)c = (L(H)En)c
because, as an easy calculation shows, (&, f* -n)s = (f - &,n)B.

Thus, the three conditions of Renault’s disintegration theorem, Theorem 3.32,
are satisfied and we conclude from that result that L extends to C*-representation
of C*(G,\) on K, proving that C({f - ¢, f - ¢¥}B) < [IfI5¢(e,¥)p) for all f €
C.(G) and all ¢ € C.(X). Since the state ¢ was chosen arbitrarily, the inequality
(f-o, f o) < |IfI4{p,¢)B is valid in the C*-algebra C*(H, 3), as was to be
shown. O

Before turning to the proof of Proposition 5.39, we present an immediate corol-
lary of Theorem 5.38.

COROLLARY 5.40. Suppose G is a second countable, locally compact, Hausdorff
groupoid and that A1 = {A\}},cqo and Aa = {A¥},cqo are two Haar systems on
G. Then C*(G, \1) is strongly Morita equivalent to C*(G, Az2).

PROOF. As we noted in Example 5.33, G is equivalent to itself via G. Since
Theorem 5.38 is independent of the Haar systems used, it proves this corollary. [

REMARKS 5.41. 1. We know of no other way to show that the C*-algebra
of a groupoid is independent of the Haar system on it, up to strong Morita
equivalence. Further, while in every example we know of, the C*-algebras
associated with two Haar systems are actually x-isomorphic, we do not have
a proof that this is true in general.

2. One of the surprising things about Theorem 5.38 is that no mention of and
there is apparently no need for any kind of measures on an equivalence be-
tween groupoids to conclude that the groupoid algebras are strongly Morita
equivalent. Measures on equivalences do not entirely vanish from the picture,
however, as we shall see in Section 5.

4. The Proof of Proposition 5.39

The proof of Proposition 5.39 rests on several lemmas. The first has applica-
bility beyond the present purpose. For it, we require a definition (cf. Definition 3.4
and Remarks 3.5.)

DEFINITION 5.42. Suppose that 7 : X — Y is a continuous open surjection
between locally compact Hausdorff spaces. Suppose also that A = {Ay}yey is a
family of positive Radon measures on X. We shall say that A is a m-system in case
the support of A, is contained in 7= (y) for each y € Y and for each f € C.(X),
the function of y, AN(f)(y) := [ f(z)d\,(z) lies in C.(Y). We shall say that a
w-system is full in case the support of each X\, is all of 7= (y).

Thus every m-system determines a continuous linear map from C.(X) to C.(Y)
— continuous in the inductive limit topologies — that is a bi-module map over
C.(Y), where C.(Y) acts on C.(X) via the formula f-¢ = f onrp. And conversely,

Add a
Mackey’s
itivity
here?

proof of
imprim-
theorem
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it is not hard to see that every continuous C.(Y)-bimodule map from C.(X) to
C.(Y) that is continuous with respect to the inductive limit topologies (and maps
non-negative functions to non-negative functions) is given by a w-system. For this
reason, we shall often say that A is a w-system from X to Y, or from C.(X) to
C.(Y). As an example of a w-system, observe that a Haar system is one. Indeed
here, X = G, Y = G, and 7 = r. (See the discussion after Definition 2.28.)
Thus, in this case, a Haar system is an r-system.

Although we do not need the following fact for our immediate purposes, we
state it here for future reference and for the purpose of showing that full w-systems
exist. It is a corollary of a theorem of Blanchard, whose proof may be found in
[18].

THEOREM 5.43. [18, Theorem 3.3] If 7 : X — Y is a continuous open map
from the separable, locally compact, Hausdorff space X onto the second countable,
locally compact, Hausdorff space Y, then there is a full w-system of Radon measures
on X.

We note in passing that separability seems to be an essential assumption in
this result.

LEMMA 5.44. [174, Lemma 1.1] If m : X — Y is a continuous open surjection
between locally compact Hausdorff spaces and if {\y}ycy is a full m-system on X,
then the map X\ : C.(X) — C.(Y) defined by the system is surjective.

ProOF. Let g € C.(Y) and let L be its support. Choose a compact set K C X
such that 7(K) = L, select a function f; € C.(X) that is strictly positive on K,
and let g1 = A(f1). Then g; is strictly positive on L and f := ((g/g1) o 7)f1 is
mapped to g by . O

The next lemma is proved in essentially the same way, so the proof will be
omitted.

LEMMA 5.45. [136, Lemma 2.14] With the hypotheses of Lemma 5.44, suppose
that U is an open subset of X, that g is a non-negative function in C.(X) that is
supported in U, and that € > 0 is given. Then there is a non-negative function in
C.(X) also supported in U such that

lg(z) = f(@)A(f) o m(z)| <€
forallz € X.

Lemma 5.36 (part b) shows that if Z is a left principal G-space then a Haar
system on G defines a w-system on Z, where 7w : Z — G\Z is the quotient map.
Moreover, the 7-system is full. Specifically, we have the following lemma promised
in Remark 5.37.

LEMMA 5.46. If Z is a principal (left) G-space, if m: Z — G\Z is the quotient
map, and if A () is defined by the formula

/ F(2) sy () == / FOrt - 2) dV () = X(f)(n(2),
Z G

f€C.(2), then {;\ﬂ-(z)},r(z)eg\z is a full w-system. Consequently, by Lemma 5.44,
X:C.(Z) = C.(G\Z) is surjective.



4. THE PROOF OF PROPOSITION 5.39 95

PrOOF. The measure :\,r(z) is the image of A\"(*) under the map from G"(*)
to the orbit of z defined by: v — v~! - 2. The assumption that Z is a principal
G-space guarantees that this map is a homeomorphism and the assumption that
{A*}ucqo is a Haar system guarantees that 5\,,(2) is well defined. The fact that
{S\,F(z)},,(z)eg\ 7 is a m-system follows from part b) of Lemma 5.36. The fact that
it is full, i.e., that supp S\,r(z) = 7~ 1(n(z)), follows from the facts that the orbit of
2z is homeomorphic to G™(*) and supp \"*) = G"(2). O

For the next lemma, recall from Lemma 2.36 that G(©) as a fundamental family
of s-relatively compact neighborhoods.

LEMMA 5.47. [171, Proposition 2.1.9] Let G be a locally compact groupoid of
the kind we have been considering and suppose that G acts to the left on a locally
compact Hausdorff space Z. Suppose that for each triple (K,U,€) consisting of a
compact subset K C GO, an open s-relatively compact neighborhood, U, of G(®,
and a positive number €, there is an e = ex,u,e € Cc(G), such that

1. e(y) >0, for all ~;
2 supp( ) CU; and
3. [[e(y)d\“(y) — 1| <€, for allu € K.

Then the family {ex v}, where the set {(K,U,€)} is directed by increasing K,
decreasing U, and decreasing €, is a net that serves as a left approximate identity
for C.(G) and for the action of C.(G) on C.(Z). If the ex u,. can be chosen to be
self-adjoint in C.(G), then {ex,u,} is a two-sided approzimate identity in C.(G).

PROOF. The last assertion clearly follows from the main part of the lemma,
since taking adjoints is a homeomorphism of C.(G) in the inductive limit topology.
We shall show that the family {ex,u,} serves as an approximate identity for the
left action of C.(G) on C.(Z), since substituting G for Z gives the proof for C.(G).
Fix an initial s-relatively compact neighborhood Uy of G(®). We shall take smaller
and smaller U’s contained in Uy. Let £ € C.(Z) (£ # 0) be given, let K = supp&,
and let L = Uy - K. Then L is compact in Z, by Remark2.35. Given ¢y > 0, choose
e < 2 min{eo/||{]|oo, €0, 1}. Choose K such that (L) C K, and choose U so that for
(7,2) EUXL CGx*Z,|&(y '2) —&(2)| < e. Then with e = ek ¢, both suppex¢,
and supp £ are contained in L, and for z € L,

(1) lex £(2) — £(2)| = \ [eneea vy -

< ‘ [ eonieta) - e and (7)‘ n ‘( [enax®e) - e

< / e(7) A" (7) + €]€lloo

<e(l+€) +e€ll€lloo

< 1(60(1 + €0) + €o)

w

S €.

PROOF OF PROPOSITION 5.39
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We will consider only the left action of G on X. The proof for the right action
of H is similar. Furthermore, we consider only the action of C.(G) on C.(X),
since we could specialize X to G and use the fact that G always implements an
equivalence between G and itself.

Observe first, that since X is a G-H-equivalence, r : X — G©) may be viewed
as the quotient map, X — X/H, and likewise, s : X — H ©) may be viewed as
the quotient map, X — G\X. Consequently, by Lemma 5.46, for f € C.(X) and
ue GO,

wo /H F(@-n) dB*) (),

where z is chosen so that r(z) = wu, is a full r-system on X; and, likewise, for
ve HO,

v /G FOr b 2) aa@) (y),

where now z is chosen so that s(z) = v, is a full s-system on X. We will need both
systems, even though we are focusing on the left action of G.

Suppose (K,U,¢) is given. By the properness of the G-action on X, we may
find finitely many open, relatively compact sets V;, i = 1,... ,n, in X such that
{r(Vi)}?_, covers K, and such that v € U, whenever (y-z,z) € V; x V;. We fix
a partition of unity on K C G that is subordinate to {r(V)}%,, and denote it
by {b;};. Thus, the b; are assumed to be non-negative, to satisfy the relation
supp(b;) C r(V;), and to satisfy the equation Y ;" bi(u) = 1, for all u € K. By
Lemma 5.44 (more particularly Lemma 5.46), there are functions ¢; € C.(X) with
the property that supp(«;) C V;, such that

/H Bile - m) B (1) = bi(r(2))

for all x € X. By Lemma 5.45, there are non-negative functions ¢; € C.(X), with
supp(p;) C V;, such that

€

wila) = ou(@) [ @il 0 ) < .

where
M =sup Y [ 1o ds @ o).
T =1

We define e i, = etobe 3.1 | 4{pi,¢i), and claim that e satisfies the hypotheses
of Lemma 5.47. Indeed, e is non-negative since the ¢; are non-negative. Also, note
that e is self-adjoint, since 4(yp,p) is self-adjoint for all ¢ € C.(X). Since ¢p; is
supported in V;, e(y) = 0, for v ¢ U, by the selection of the V;’s. To verify the last
condition of Lemma 5.47, suppose u € K, and choose x € X such that r(z) = u.
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Then

[ e - 1‘
G

Vo (v=Lam) dB5@ (m) @ — S b (r(x
> /G /H oy~ 45 ) ) = 3 o)

i /H {soz-(zn) /G @i(y tan) d/\“””)(v)—wz-(wn)} dp*@ ()| <

Finally, to obtain a sequence {ep}52; that is cofinal among the {ex v}, sim-
ply choose an expanding sequence of K’s whose union is G(©), {K,}, a decreas-
ing sequence of U’s whose intersection is G(©), {U,}, a decreasing sequence of
€’s converging to zero, {€,}, and let e, = ek, U, c..- O

€.

5. Haar Systems on Imprimitivity Groupoids

We have remarked earlier that it may seem odd that no use was made of
measures on X in the proof of Theorem 5.38. One of our goals here is to show that
they are implicitly present. In fact, it will turn out that if X is a (right) principal G-
space for a locally compact groupoid G with a Haar system, then the imprimitivity
groupoid X xg X°P has a Haar system if and only if there is a family of measures on
X that constitute an equivariant s-system in the sense of the following definition.

DEFINITION 5.48. Suppose X andY are locally compact, left G-spaces and that
m: X = Y is a continuous, open, equivariant map, i.e., suppose that v - w(z) =
n(y-z) for all (y,z) € GxX. Then a m-system {\y}ycy on X is called equivariant
in case for (v, y) € G+ Y, v - Ay(f) = Ay (f), for all f € C(X), i.e., in case
Jfv-z)dry(z) = [ f(z)dA,.y :1:) Equivariant w-systems for right principal G-
spaces are deﬁned stmilarly.

Of course, a Haar system is an example of an equivariant w-system. In this
case, X is G, with G acting on the left by translation, and 7 is . Recall that G
acts on G(© by the formula: - s(y) = 7(v). Thus, in this case, a Haar system is
an equivariant r-system. The following lemma was proved by Renault in [174].

LEMMA 5.49. [174, Lemma 1.3] Let X and Y be two locally compact (left)
principal G-spaces and let m : X — Y be a continuous, open, equivariant surjection.
Then 7 induces a continuous open surjection 7 : G\X — G\Y, and further:

i) Every equivariant - system A on X induces a - system 5\ on G\X according
to the formula A(f = [ f(#) = [ f(z) ), where & and
denote the images of x and y in G\X and G\Y respectwely.

ii) Conversely, given a 7-system 7 on G\X, there is a unique equivariant m-
system A on X such that T = A

The proof of this lemma relies on another lemma of Renault’s that will be
useful.

LEMMA 5.50. [174, Lemma 1.2] Suppose that X,Y, and Z are locally compact
Haousdorff spaces and suppose 7 : X — Z and 7 : Y — Z are continuous, open
surjections. Let X *Y = {(z,y) | n(z) = 7(y)} and let p» : X *Y = Y be
the projection onto the second component, pa(z,y) = y. Then ps is a continuous
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open surjection. Suppose, further, that for each z € Z, X\, is a measure on X
that is supported on w'(z) and define Aoy to be ;) X €, (which is supported
on py'(y), y € Y). Then X is a continuous family of measures in the sense that
z = M[f)(2) := [ f(z)d\; () is continuous for all f € Cc(X) if and only if Xs is a
continuous family of measures.

Thus, except for an assertion about the supports of A(f) and A2(f), A is a
m-system iff Ay is a pa-system in the sense of Definition 5.42.

PROOF. It is easy to see that ps is continuous. The fact that it is open follows
from Lemma 5.30. The fact that it is a surjection results from the surjectivity of
m and 7. By the Stone-Weierstrass theorem we need only test Ay against functions
of the form F(z,y) = f(x)g(y), where f € C.(X) and g € C.(Y). But for such a
function, A2(F) = (A(f) o 7)g. From this, it follows that A is continuous iff A is
continuous. |

Proor oF LEMMA 5.49
Consider the diagram

P I g
G\X G\Y

™
X — Y
!

_)

7
where p and ¢ denote the quotient maps. Then, by definition, )\( flog=A(f op),
f € Ce(G\X).

Define ¢ : X — (G\X) =Y = {(p(z),y) | 7(p(z)) = q()} by ¢(z) =
(p(z),w(x)). Then ¢ is an equivariant homeomorphism, where G acts on (G\X)*Y
be translating in the second variable. Observe that ¢(7=1(y)) = 7= (q(y)) x {y}.
Thus, p maps 7! (y) homeomorphically onto 7(g(y)). Since Ay, = YAy, for all v
and y such that s(y) = r(y), the function y — p(A,) is constant on sets of the form
¢ Y(2), z € G\Y. Set A, = p(\,), 2 = q(y). Then ¢(\,) = }\q(y) X €y, and the
continuity of \ follows from that of A, by Lemma 5.50. Since, evidently, )\( f) has
compact support, if f has compact support, we conclude that \ is a 7-system.

Conversely, given 7, note that since p maps 7~!(y) homeomorphically onto
71 (q(y)), there is, for each y € Y, a unique A, such that 7.,y = p(Ay). If s(vy) =
r(y), then g(vy) = ¢(y) and for z € 7 *(y), p(yz) = p(x). Thus, p(yA,) = p(Ay) =
Ta(y) = Ta(vy) = P(Ayy), which shows that yA, = X,,. Thus, A is equivariant. The
fact that it is continuous follows from Lemma 5.50 again, and a straightforward
check shows that A(f) has compact support for all f € C.(X).

Suppose that X is a right principal G-space and let a be a full equivariant

s-system on X. Define {8;},cx by the formula 8, := €, X @) so that for
f € CL(X x X°P),

/X*xop f(u,v) dBo(u,v) :/ F(z,y) doy(z) ().

XxXcoP
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Then a moment’s reflection reveals that {8;}scx is a full p;-system, where p; :
X % X°P — X is projection onto the first variable. Moreover, since « is equivariant,

/ f(u,v) dﬁz-w(uav) = / flz-v,9) das(z-v)(y)
X=xXeopP

XxXopP

= / f(m g 771y) das(w) (y)
X % XopP

- / flu-v,7") dBy(u,v),
X xXop

which shows that 3 is an equivariant p;-system. By the first half of Lemma, 5.49,
3 induces a p-system 3 from X ¢ X°P to X/G. Now X/G is the unit space of
the groupoid X *g X°P and it is not hard to see that if change notation and write
[z] for & in X/G, and if we set A*] = B[z], then M\ is a Haar system on X xg X°P.
Indeed, the only thing that is at issue is the invariance of A, but this is the result
of the following equation:

/ F(Lz, [, ]) A ([u, v]) = / f(lz,v]) By,
X *qg X©P

X *g X°P

- / £ ([, o)) dag(y) (v)
X *g X©P

- / £ (2, 0]) dagiey (v), since 5(z) = s(y),
X *g X°P

- /X e AP ([, ).

On the other hand, observe that a Haar system A for X xg X°P is a p;-system. From
the second half of Lemma 5.49, we conclude that there is a unique p;-system g from
X % X°P to X such that ﬁ = X. From the left invariance of A on X xg X°P and the
uniqueness of 3, it follows easily that 8 must be of the form 3, = €, X a,, with
supp a; C s71(s(z)). The equality suppa, = s~1(s(z)) follows from the equality
supp A\l = {[z,y] | s(z) = r°P(y)}. Finally, the invariance of o and the fact that
a; depends only on s(z) follows from the fact that Al*] depends only on [2] and
not on x.

We have thus proved the following theorem, which is implicit in [174] and made
explicit in [104].

THEOREM 5.51. [104, Proposition 5.2] Let X be a principal right G-space.
Given an equivariant s-system a on X, the formula

60 [ ) ) = [ fom(uu)dies x aym)wo),

X*XopP
where f € Ce(X %g X°P) and 7 : X x X°P — X xg X°P is the quotient map, defines
a Haar system A on X xg X°P; and conversely, if X xqg X°P has a Haar system A,

then there is a unique equivariant s-system o on X such that equation (5.1) holds
for all functions f € C.(X xg X°P).
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CHAPTER 6

Ideals, Orbits, and Amenability

In Chapter 1, we indicated that the ideal structure of a transformation group
C*-algebra is determined to a large extent by the orbit structure of the group
action. The same is true for groupoid C*-algebras. Our objective in this chapter
is to report on the relationship between ideals and orbits. The relationship is the
strongest when the groupoid is amenable and so we will survey some of the recent
advances in the structure and analysis of amenable groupoids here also.

Throughout this chapter, our standing assumptions will be in force: all groupoids
will be locally compact, Hausdorff, second countable, and have Haar systems.

1. Transitive Groupoids

A transitive groupoid is one with only one orbit. So the structure of the as-
sociated C'*-algebra ought to be determined by the structure of the C*-algebra of
any isotropy group. Our objective in this section is to make this assertion precise.

So suppose G is a transitive, locally compact groupoid satisfying our standing
hypotheses. Let u € G be a prescribed unit and let H be the isotropy group of .
Then, of course, H is a second countable, locally compact group. As was remarked
in Examples 5.33 (see Example 3), the space G, is a G-H equivalence, and so by
Theorem 5.38, C.(G,) may be completed to become a C*(G)-C*(H) imprimitivity
bimodule. This implies that the ideal structures of the two C*-algebras C*(G)
and C*(H) are “the same”. (See [156] where it is shown how an ideal in C*(H)
induces an ideal in C*(G) and vice-versa, and how this sets up a lattice isomorphism
between the ideals in C*(G) and the ideals in C*(H).) While one might consider
this to be the end of the story, it is possible to prove the following result that places
the equivalence of C*(H) and C*(G) in a somewhat finer perspective and helps to
show, too, that non-isomorphic groupoids can have isomorphic C*-algebras. It is a
generalization of a theorem of Phil Green [83] and of Corollary 3.34.

THEOREM 6.1. [136]Suppose G is transitive and has a Haar system {A\"},cqo) .
Let u € G and let H = Glguy be the isotropy group of u. Then there is a pos-
itive measure p on G© such that C*(G) is “naturally” isomorphict to C*(H) ®
K(L*(GO), 1)), where K(L*(G©, 1)) denotes the C*-algebra of compact operators
on L2(GO) ).

PROOF. As we remarked above, G* is a G-H-equivalence. Consequently, by
Theorem 5.38, C.(G*) may be completed to form an equivalence bimodule X;
linking C*(G) with C*(H). We shall build another (left) Hilbert C*-module X,
over C*(H) that is isomorphic to Xy, say via a map W :X; —Xa, and such that the

IThe inverted commas are used here since the term ‘natural’ has a technical meaning implying
that the isomorphism is independent of the choice of © and the cross section used in the proof of
the theorem. The isomorphism depends on this data, but in a (non-technically) natural way.
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imprimitivity algebra of Xs is isomorphic to C*(H) ® K (L*(G®, 1)) for a suitable
measure p on G(%. Since C*(@) is the imprimitivity algebra of X;, the isomorphism
W will implement a C*-isomorphism between C*(G) and C*(H) ® K(L*(G©®, p)).
To form Xy, let B.(H) ® B.(G®) denote the linear span of all functions of the
form ¢ ® £, where ¢ ® £(t,w) = p(t)é(w) and ¢ and £ are bounded, Borel, and
compactly supported functions on H and G(® respectively. Then C.(H) acts on
B.(H) ® B.(G) via the formula ¢ - (p® ) = (1 * p) ® £, where 1) * ¢ denotes the
ordinary convolution of functions on H. For each Radon measure p on G0 we
have a C*(H)-valued inner product on B.(H) ® B.(G®) defined by the formula

(0196029600 = [ @enGoue) ([ awaiauw).

(0)

where Ay is Haar measure on H. Observe that because H is a locally compact
group, the values of this sesquilinear form lie in C.(H). It is then not difficult to
prove that this inner product converts B.(H) ® B.(G®) into a pre-Hilbert C*-
module over C*(H) whose completion, X(u), has the property that K(X(u)) =
C*(H) ® K(L*(G,u)). So it remains to find a measure p for which there is
an isomorphism W :X; —X(u). By Lemma 4.12, there is a Borel cross section
p:G© = G¥ to the map s|G* with the property that p(K) has compact closure
for each compact set K C G(9. Such a p is called a regular cross section to s|G™.
We shall prove that for each regular cross section p to s|G*, there is a measure g on
G and a C*(H)-Hilbert module isometry from X; onto X(p). To this end,extend
p to a map from G onto G* by defining p(z) = p(s(z)) and define ¢ : G* - G
by 9 (z) = zp(z)~!. Tt is easy to check that 1) is well defined and that the range
of ¢ is contained in H. Now define ¢ : G* = H x G by ¢(z) = (¢(x), s(x))
and observe that ¢ is an equivariant Borel isomorphism for the action of H on
H x G(© given by translation in the first variable. It follows that @(\*) = Ay X p,
for a certain measure p on G To see this, observe that since © is equivariant
and \* is invariant, ¢(\*) is an invariant measure on H x G(® for the action of
H. Consequently, when (%) is disintegrated following the projection onto the
first factor, using Theorem 3.6, we may write p(A*) = [ Y dfi(w), where fi is
a measure on G© and each v, is an H-invariant measure on H. Thus, each v,
is a multiple of Haar measure C(w)Ag. The measurability of the map w — v,
implies the measurability of the function C' and so, if u is defined to be C - fi, then
o(Ag) = Ag x p. (For more details, see [187].) It is a straightforward application
of Fubini’s theorem and the fact that the L'-norm on C.(H) dominates the C*-
norm on C.(H) to show that the bounded Borel functions with compact support
on G*, B.(G%), may be viewed as a dense subset of X;. Likewise (more easily,
actually), the compactly supported, bounded, Borel functions on H x G is dense
in X(u). If W is defined by the formula W¢ = £ o p~!, then W maps B.(G%)
bijectively onto B.(H x G©) and routine computations show that W extends to
be a C*(H)-module isomorphism from X; onto X(u). O

2. Ideals in General

One of the main attractions of the theory of groupoids in operator algebra, is the
fact that an open invariant subset of the unit space of a locally compact groupoid
determines an ideal in the C*-algebra of the groupoid. The preceding section shows
that not every ideal need come from an open invariant subset, but in the best
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of circumstances, which still are quite widely applicable, the ideal structure of a
groupoid C*-algebra can be “calculated” in terms of the structure of open invariant
subsets of the unit space and the ideal structure of the C*-algebras of isotropy
groups. The following proposition was proved in [171] under restrictive hypotheses,
which now are unnecessary by virtue of Renault’s disintegration theorem, Theorem
3.32 It is the first step.

PROPOSITION 6.2. Let G be a locally compact, second countable, Hausdorff
groupoid, with Haar system {\"},cq . Let U be an open invariant subset of GO,
let F = GO\U, and let I.(U) = {f € C.(G) | f(z) =0, = ¢ Glv}. If I(U)
denotes the closure of I.(U) in C*(Q), then I(U) is an ideal in C*(G), isomorphic
to C*(Gly) and the quotient, C*(G)/I(U) is isomorphic to C*(G|r). Thus, we
have a short exact sequence

(2.1) 0 = C*(Glv) = C*(G) = C*(G|r) — 0.

PROOF. Define j : C.(G|y) = I.(U) by the formula j(f) = f, where f(z) =
f(z), if z € G|y and is zero otherwise. Also, let p : C.(G) — C.(G|r) be the map
defined by restricting functions in C.(G) to G|r. Then j and p are continuous with
respect to the inductive limit topology, and the following exact sequence is clear:

0 C.(Glv) % C.(G) B C.(G|r) — 0.
The proof is completed with an easy application of Theorem 3.32. |

REMARK 6.3. If the restriction G|r is not measurewise amenable (see Defini-
tion 6.6 below) in Proposition 6.2, the short exact sequence 2.1 does not hold, if all
the C*-algebras are replaced by their reduced versions; i.e., one does not have, in
general, o short exact sequence of the form

0= Crea(Glu) = Crea(G) = Crea(Glr) = 0.

An example, based on the tangent groupoid of a manifold may be found in [175,
Remark 4.10].

Recall from Section 3.4 of [54] that if A is a C*-algebra, if 7 € Rep(A), and if
S is a subset of Rep(A), the following two assertions are equivalent:

1. kerm D N{kero | o € S}.
2. Each vector state associated with 7 is a weak-x limit of states that are sums
of vector functionals associated to the representations ¢ in S.

If either assertion holds, we say that 7 is weakly contained in S. We also say that
w1 is weakly contained in 7y if and only if 7 is weakly contained in {m2}. We say
that 7y and mo are weakly equivalent if and only if each is weakly contained in the
other; this happens if and only if ker m; = ker 75.

EXAMPLE 6.4. If u is a measure on the unit space of a locally compact groupoid
G, then Ind u is weakly contained in {Inde,}ycp, where E = supp u because Ind p
is unitarily equivalent to |, o Ind ey dp(u).

PROPOSITION 6.5. With the notation of Proposition 6.2, let I,..q(U) denote the
closure of I.(U) in C},;(G).

1. If p is a quasi-invariant measure on GO with support F, then ker(Ind ) =
I..4(0).
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2. The map U — L..q(U) is an order preserving injection from the collection
of open invariant subsets of G©) into collection of ideals in C*,,(G).

PROOF. 1. Tt suffices to assume that F = G© and to note that by Exam-
ple 6.4, Ind p weakly contains any representation of the form Ind u’' where
supp p' is contained in supp p.

2. This is clear from the first assertion.

O

The key ingredient for analyzing the reduced C*-algebras of locally compact
groupoids is the notion of amenability. We will have more to say about this in
Section ??. For now we use the following definition.

DEFINITION 6.6. If i is a quasi-invariant measure on GO, we say that p is
amenable in case there is a net {f;} C C.(G) satisfying the following two properties:

1. The functions u — [|fi|>d\* converge to the constant function 1 on G(©
in the weak-* topology of L= (G, p).

2. The functions f;x f¥ converge to the constant function 1 on G in the weak-x
topology of L= (G,v), where v is the induced measure on G, po \.

The groupoid G is called measurewise amenable in case each quasi-invariant
measure on GO is amenable.

Here, the principal application of amenability is the following result proved by
Renault [171, Proposition II.3.2].

THEOREM 6.7. If p is an amenable, quasi-invariant measure on G° and if 7
is the integrated form of a representation of G based on p, (,u,G(O) xH,L), then w
is weakly contained in Ind .

PrOOF. We merely present an outline, referring to [171, Proposition I1.3.2] for
details. Without loss of generality, we may assume that p is a probability measure.
Fix a unit vector £ in [ ® 3 (u) du(u), and consider the vector state determined by
¢ associated with r,

o(f) = (n(F)E,€) = / F@)L@)E o 5(9), € 0 7(y)) dvoly),

where, as usual, vy denotes the symmetrized measure associated with v = g o A:
vo =A%y, A =dv/dv"'. Form the functionals

bi(f) = / (s # 1) @) LW)E 0 (), € 0 7(y)) dun(y).

Then ¢:(f) — 6(f). However, ¢;(f) = (Ind M(f)&, &) where &(x) = AY2(2) @ L(z})¢o
r(z) is a section of the bundle G(® x K, where K(u) = L?(\,) ® H(u), and Ind M is
just the integrated form of U ® I where U is the regular representation. This is a
multiple of Ind p, if dim #H(u) is constant, and is weakly equivalent to Ind g in any
case. |

COROLLARY 6.8. If the groupoid is measurewise amenable, then C*(G) = C*_(G).

red
As in the case of locally compact groups, the converse of Corollary 6.8 is true.
This was recently proved by Anantharaman-Delaroche and Renault in [5] and will
be discussed in Section ??7. Our goal here is the following theorem, which is a corol-
lary, Corollary 4.9, of Renault’s generalization [175] of the Gootman-Rosenberg
solution [79] to the so-called Effros-Hahn conjecture [63].
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THEOREM 6.9. [175, Corollary 4.9]Suppose that the groupoid G is principal
and measurewise amenable. Then the map U — I(U), from the collection of open
invariant subsets of GO to the ideals in C*(G), is a bijection.

PROOF. Again, we merely sketch the ideas of the proof referring to [175] for
details. By Corollary 6.8 and Proposition 6.5, we know the map is injective. We
need to show the map is surjective. So, given an ideal I, choose a representation
of C*(@) so that I = kern and write 7 as the integrated form of a representation
of G, (1, G % H,L). We saw in Theorem 6.7 that 7 is weakly contained in Ind y.
If we knew that 7 is weakly equivalent to Ind u, the proof would be complete, by
Proposition 6.5 and Corollary 6.8. Now Ind i is weakly equivalent to the represen-
tation called Ind M in Theorem 6.7. Here, we need to be a bit more explicit about
the form of Ind M. By hypothesis, (7(f)¢, &) = [ f(z)(L(z)Eos(z),Eor(x)) dvo(z),
EeH:=][ ® % (u) duu(u). Define the representation M on this Hilbert space by
the formula M(f)¢é(u) = f(u)é(u). Let P : C.(G) = C.(G(®) be defined by the
formula P(f) = f|G®. (Then P is what is known as a generalized conditional
expectation.) Define the sesquilinear form on C.(G) ® H by the formula

(i ®&, f2 ®&) = (&, M o P(ff * f2)&2)-

This form is semi-definite and gives, in the usual way, a Hilbert space K. The
representation Ind M acts on K through the formula Ind M (f)(g ® &) = f*x g ®&.
We remarked in the proof of Theorem 6.7 that Ind M is weakly equivalent to Ind .
So we need only show that Ind M is weakly contained in w. Write @ for Ind M.
Then we have

(i ®&,7(f)(f2 ® &) = (&1, M o P(ff * f * f2)&2).

In Lemma 3.2 of [175], Renault proves that there is a uniformly bounded net {Q,}
of maps on C*(QG) of the form

Qulf) =3 e fes,
=1

where each e € Cp(G(®) and e$ fe? (z) = e (r(z)) f(x)e (s(z)), € G, such that

T o Qu(f) = M o P(f) weakly for each f € C.(G). This shows that = weakly
contains Ind M.

REMARK 6.10. In the r-discrete case, the proof of Theorem 6.9 is substantially
easier. See [171, Proposition I1.4.6].

O

COROLLARY 6.11. If G is a measurewise principal groupoid, then C*(G) is
simple if and only if G is minimal, i.e., if and only if there are no proper open
invariant subsets of G(©.

REMARK 6.12. Both Theorem 6.9 and Corollary 6.11 depend heavily on the
hypothesis that the groupoid G is Hausdorff. In an appendiz to [175], G. Skandalis
ezhibits a minimal foliation with a non-Hausdorff holonomy groupoid G such that
C*(Q) is not simple.

Say something about
the effect of isotropy
here and discuss
the Gootman-
Rosenberg solution
to the Effros-Hahn
conjecture.



Give a list of all
the equivalent condi-
tions?

Add in the discus-
sion about isotropy
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3. Measure-Theoretically Smooth Groupoids

Recall that a C*-algebra A is type I in case for each representation w of A on
a Hilbert space H, the weakly closed algebra generated by w(A) is a type I von
Neumann algebra. This happens if and only if for each irreducible representation
of A on H, w(A) contains the full ideal of compact operators on H. Of particular
importance for the material we are discussing is the fact that A is type I precisely
when an irreducible representation is uniquely determined by its kernel. That is, A
is type I if and only if for any two irreducible representations m; on Hilbert spaces
H;, i = 1,2, the equation kerm; = kermy if and only if 7; is unitarily equivalent
to 72. In this event, Prim(A) with the Jacobson topology is homeomorphic to the
spectrum A with the topology inherited from the pointwise-weak operator topology
on Rep(4).

In the case when A is the C*-algebra of a locally mact groupoid, G, then,
Theorem 6.16 implies that when C*(QG) is type I, then C*(G) as a set is completely
determined by the spectra of the isotropy groups of G. It is, therefore, important
to determine when C*(G) is type I. The following theorem, due to Ramsay [163],
generalizes earlier results of Glimm [77] and Effros [60] that were proved in the
context of transformation groups.

THEOREM 6.13. [163]Let G be a Polish groupoid and let R = (r,s)(G) be the
associated equivalence relation in G©© x GO, Then the following conditions are
equivalent:

1. For each unit u € GO, the restriction of r to Gu(= s '(u)) induces a

homeomorphism between G /(G|{u}) and the orbit of u.

2. Each orbit is a G5 subset of G(®.

3. The quotient space G /G of all orbits with the quotient topology is Ty.

Further, if R is an F, subset of G x GO, in particular, if G is a second
countable, locally compact, Hausdorff groupoid, then these conditions are equivalent
to each of the following:

4. Fach orbit is locally closed.

5. The quotient Borel structure on G(O)/ G is countably separated.

6. Every (not-necessarily—quasi-invariant) ergodic measure on G© s concen-

trated on an orbit; i.e., if a measure u has the property that each invariant
Borel set is either null or co-null, then supp p is contained in an orbit.

7. GO /G is a standard Borel space.

8. There is a Borel cross section to the quotient map 7 : G — G(O)/G.

9. The equivalence relation R C G x G is a G5 subset.

REMARK 6.14. In Ramsay’s theorem, there are five other conditions that are
each equivalent to the ones presented.

DEFINITION 6.15. A Polish groupoid that satisfies any, and hence all, of the
equivalent conditions in Theorem 6.13 is called measure theoretically smooth. The
groupoid is also said to have a smooth orbit space.

THEOREM 6.16. Let G be a locally compact, second countable groupoid with
Haar system. Then C*(G) is a type I C*-algebra if and only if G has a smooth
orbit space and for each u € GO, the isotropy group Glguy s type I.



CHAPTER 7

Bundles and Groupoid Crossed Products

This chapter will deal with C*-bundles, groupoids acting on C*-bundles, and
the resulting crossed products.

107



108 7. BUNDLES AND GROUPOID CROSSED PRODUCTS



CHAPTER 8

Coordinatization and Examples

This chapter will deal with coordinatization theorems and examples of a diverse
number of groupoids.
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8. COORDINATIZATION AND EXAMPLES



CHAPTER 9

Triangular Operator Algebras

This chapter will deal with partial orders in groupoids and triangular operator
algebras based on them.
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9. TRIANGULAR OPERATOR ALGEBRAS



CHAPTER 10

Representations and Dilations

This chapter will deal with the representation theory of triangular operator
algebras.
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10. REPRESENTATIONS AND DILATIONS
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